A Comprehensive Approach to Reformer Tube Inspection and Assessment
Brian Shannon, IESCO, Inc.3445 Kashiwa Street, Torrance, CA 90505 USA
E-Mail: beshannon@iesconde.com
Carl Jaske, CC Technologies
6141 Avery Road, Dublin, OH 43016-8761 USA
E-Mail: cjaske@cctlabs.com
ABSTRACT
Hydrogen reformer tube assessment and life predictions require specific inspection and multi-parameter computations to provide plant operators with realistic usable data. A series of non-destructive examinations are used to determine tube condition. These inputs are married with a series of deterministic and finite element calculations for remaining life prediction. A custom software program and inspection technology is outlined in the discussion.INTRODUCTION
Reformer tubes normally used in the refining, petrochemical and fertilizer industries are manufactured by the centrifugal casting process and heat-resistant austenitic alloys such as HK -40, HP-40, and HP -Niobium modified materials. A design life of 100,000 operating hours has been the normal time-based criteria for considering retirement of tubes. Many operators of furnaces using such tubes desire to change their maintenance philosophy for tube retirement to condition-based assessment rather than time-based assessment. At a cost of several thousands of dollars per tube and a retubing cost of $1MM-$4MM, a significant amount of capital can be inadvertently applied if tubes are retired either too early or too late. There are many reformer furnaces remaining in service beyond the 100,000 operating hours criteria.Metallurgical examination of tubes removed from such service has typically indicated carbide agglomeration, but no discernable creep voids or fissures.(1) This provides the opportunity to improve reformer furnace life-cycle value by life-extension of the tubes, using condition-based criteria. Rather than remove tubes from service for sectioning and metallurgical examination at every plant turnaround, it is advantageous to use NDE techniques to screen tube condition for environmental damage such as creep. Operational data required for estimating tube condition by analysis are usually not available. Proper determination of tube condition and its ultimate life requires specific in-situ examinations. The disadvantages in removing tubes from service on a sampling basis to determine tube integrity include:
- Catalyst removal
- Early retirement of serviceable tubes
- Late removal of non-serviceable tubes, impacting turnaround critical path duration if it is found that all the tubes need to be renewed
- Maintenance costs. The advantage of removing tube(s) from service to determine condition include:
- True metallurgical condition of that particular tube is known
- Costs
- Individual plant preferences (limited knowledge of technologies)
- Historical experiences at the specific location
- Turnaround duration
- Availability of analyzed data from reformer tube testing
- Knowledge of the different NDE technologies (strengths and weaknesses)
- Availability of specialist services
DISCUSSION
Reformer tube condition can currently be inferred in-situ by qualitative NDE assessment using the following techniques:- Diametrical Growth (diameter change with creep in some cases)
- Wall Thickness Measurement (apparent decrease in wall thickness with creep)
- Replication (final stages of creep damage; i.e., macrocracking)
- Radiography (final stages of creep damage; i.e., macrocracking)
- Eddy Current (responds to chromium migration due to overheating and conductivity changes)
- Ultrasonic (responds to attenuation and scattering)
DIAMETRICAL GROWTH
The principal rationale behind this technique is that, as creep damage occurs, the tube bulges. Each material type has its own nominal value of diameter change where creep is considered to have occurred. The following rules of thumb have been reported by various operators over the years. As an example:- HK-40 -- 2-3%
- HP-45 -- 5-7%
Figure 1 Macrocracking -- Severe Damage |
Figure 2 Aligned Voids -- Moderate Damage |
Figure 3 Isolated Voids -- Slight Damage |
Figure 4 As Cast -- Sound Material |
Fig 5A |
Fig 6: Diametrical Growth Comparison |
Fig 7: HP Modified - As Cast (Unfired) HP Modified - 6% Creep (Fired) |
To assess diametrical growth, manual strapping of the tube is often performed, and the results are tabulated per tube, at specific locations on the tube (normally at burner locations). As this technique tends to be tedious, time-consuming and requires scaffolding, automated techniques have been developed. Current automated techniques include eddy current proximity sensors and displacement sensors.
The 'H' SCAN ׂ displacement sensor is attached to a scanning head that traverses an in-situ tube and records the diameter measurement at pre-determined intervals indicating the precise location of suspect diameter changes. The output of the tool is input directly into the software spreadsheet for data recording and analysis. A typical finished chart is shown in Figure 5B, note the difference in O.D. measurements of the three tube segments. This is a result of the manufacturing variations. Due to these variations, it is preferable if baseline data can be obtained on the tubes when initially installed so accurate trends may be developed.
Fig 5B |
WALL THICKNESS MEASUREMENT
As creep damage occurs, an apparent decrease in wall thickness is evident. As an example, average wall thickness measurements were obtained from a tube that had been sectioned at 0.4m, 1.0m, 7.0m, and 11.0m positions; the metallographic condition is depicted in Figures 1, 2, 3, and 4, respectively.(2) There is an apparent decrease in wall thickness for these four sections of tubes, as shown in the graph of average wall thickness in Figure 8.Fig 8 |
REPLICATION
Replication is useful for in-situ assessment of reformer tube outside surfaces, to detect overheating that causes microstructural changes. Replication is a "spot" type assessment and is normally used as a supplemental technique. Only the advanced stages of creep damage can be assessed utilizing in-situ replication.RADIOGRAPHY
Random radiographic examination is normally used as a supplementary technique to confirm the presence of severe cases of creep damage. It is reasonable to expect to locate such damage when it has extended 50% in the thru-wall direction, when the tubes are filled with catalyst and isotopes are used instead of an X-ray tube. Although using an X-ray tube provides an improved quality image, it is not normally employed, because of practical conditions on site.EDDY CURRENT
Eddy Current techniques have been used for a number of years on HK-40 and HP-45 tubes. The basic principles of the technique can be found in Reference 3. The technique relies on changes in electric circuit conditions; the circuit being the instrumentation, cables, sensing coil, and the item under test. As the mechanical properties of the test materials change, a change in overall circuit impedance occurs, which is displayed on an oscilloscope. By monitoring these changes, it can be inferred that creep damage is present, based on observation of the signal parameters in comparison to similar changes that occurred on known creep-damaged materials. The depth of penetration of eddy currents is primarily influenced by frequency, conductivity, and relative permeability.Eddy Current coil design is important to obtain adequate sensitivity and signal to noise ratio. Some tubes, such as HP-40 and similar materials that have a high percentage of nickel, require the use of magnetically shielded or biased coils to reduce the effects of material permeability variations. This improves the signal to noise ratio so a reliable test result is obtained, allowing adequate discrimination of creep damage from general material property characteristics.
Referring again to Figures 1, 2, 3, and 4 that depict varying degrees of damage within a reformer tube, the eddy current responses to these samples are as shown in Figure 9. Note the differences in response to the various stages of damage. The eddy current operator evaluates these changes in signal response. Other factors that the operator considers are:
- Varying lift-off, influencing the signal response, scale and welds being typical examples
- Overheating that causes chromium migration, scale formation, and a significant eddy current response in terms of phase and amplitude changes [4]
- Variations in material permeability
Fig 9 |
ULTRASONIC
Ultrasonic techniques utilized for the detection and estimation of creep damage include:- Through transmission ultrasonic attenuation
- Ultrasonic scattering techniques [5,6]
Fig 10 |
Fig 10 | Fig 12 (As Cast) Fig 13 (Fired) |
The scattering based ultrasonic scattering techniques is similar in principle to the ultrasonic backscatter technique used in High Temperature Hydrogen Attack (HTHA) evaluations in terms of the signal shape, amplitude and location of the signal response(6) that the operator evaluates in comparison to signal response from a "sound" section of tube. The ultrasonic backscatter technique used for HTHA determination relies primarily on signal features such as amplitude, shape, and location. The scattering technique utilizes similar signal features. Figure 14 illustrates a "sound” section of tube, and Figure 15 shows a damaged section of tube. Note the high amplitude signals with length. This technique indicates when surface conditions influence the ultrasonic signal.
Fig 14 |
Fig 15 |
COMBINING NDE TECHNIQUES ¾ 'H' SCAN ׂ TECHNOLOGY
Review of the NDE techniques outlined above illustrates some of the advantages and disadvantages associated with each individual technique. Extensive trials have been conducted to determine the viability and optimization of the various techniques. It is currently concluded that no one technique can in all cases provide stand-alone information that will allow complete quantitative assessment of tube condition.(2,13) It is therefore prudent to combine NDE techniques to improve the overall reliability of reformer tube condition evaluation. The optimum combination of NDE techniques is dependent on:- Type of material
- Type of suspected damage
- Surface condition of material
- Time frame allowed for data analysis
- Cost
The one common element in obtaining NDE data is use of a powered carrier mechanism that traverses the length of a tube. The following NDE sensors can be loaded onto a carrier mechanism for simultaneous data collection:
- Ultrasonic (attenuation, scattering and wall thickness)
- Eddy Current
- Profilometry
Fig 16 |
TUBE LIFE PREDICTION
Analytical methods can be used to predict reformer tube creep life. The most commonly used method of creep life prediction is based on calculating stress using a simple formula and characterizing material stress-rupture data using a time-temperature parameter. Advanced methods are sometimes used to predict tube life. They use finite element stress analysis and detailed modeling of both material creep and stress-rupture behavior. The most well-known and widely used of the advanced techniques is the pcTUBE™ computer program(14-16) that was specially developed for reformer tube creep life prediction. This section of the paper reviews these methods of tube life prediction and then discusses a new method of directly coupling the advanced life prediction techniques with the inspection results to produce an integrated assessment of remaining tube life. Figure 16.DESIGN LIFE PREDICTION
Fig 17: Window Rupture of a Catalyst Tube Cracked Catalyst Tube. |
Fig 18 |
LIFE PREDICTION USING pcTUBE™
Because of the limitations of the design life prediction method, a special-purpose computer program named pcTUBE™ was developed.(18) The program predicts local material damage related to internal pressure, operating temperature, thermal stress gradient, and cyclic operation.(14-15) It includes material properties, creep deformation models, and creep damage relations for three cast heat-resistant alloys – HK-40, HP-50, and Nb-modified HP.(16) The pcTUBE™ program computes stresses caused by pressure, thermal, and axial loading using the elastic-creep finite element analysis (FEA). The FEA model is illustrated in Figure 19. A segment of the tube wall can be divided into as many as 12 elements. Using such a segment of the tube wall is reasonable because the effects circumferential thermal gradients on hoop stress are not significant.(14-15) The accumulation of creep damage in each element is computed during simulated long-term operation. Important cyclic operations, such as start-ups/shutdowns and operating trips, are modeled using a table of input parameters. Stress relaxation and redistribution during steady operation are modeled. Upon initial loading, a through-wall thermal stress is produced by the thermal gradient through the wall. Creep causes the thermal stress to relax and redistribute with time. The repeated process of application of thermal stress followed by stress relaxation and redistribution are modeled during start-ups/shutdowns and operating trips.
Fig 19 |
As mentioned previously, pcTUBE™ contains data for only the cast HK-40, HP -50, and Nb-modified HP alloys. Thus, it cannot be used for wrought materials or other cast alloys. It does contain an adjustment factor that can be used for a material that behaves similar to one of those included in the program. It accounts for slightly increased or decreased creep strength. For example, this adjustment factor has been used to model the behavior of creep-damaged materials or micro-alloyed HP materials.
The pcTUBE™ computer program correctly predicts that the maximum amount of creep damage will develop between the inner surface and mid-wall of a tube, as shown by the example in Figure 20. It also correctly predicts that tube life is significantly reduced by relatively small changes in operating temperature or by typical cyclic operation. Tube life is reduced by 50% or more for a 20 to 30÷C increase in maximum operating temperature. Two to four start/stop cycles per year may decrease tube life by 50% or more compared with the ideal case of continuous operation with no shutdowns. Thus, pcTUBE™ has been found to be a valuable tool for predicting the service life of reformer furnace tubes.
COUPLING LIFE PREDICTION WITH INSPECTION RESULTS
Operators of reformer furnaces wish to predict the remaining life of in-service tubes. Before the remaining life of the tubes can be calculated, their current condition must be determined. The current condition either can be measured by some destructive or nondestructive test method or calculated using an analytical model, such as the pcTUBE™ computer program. The major drawback of the latter approach is that the uncertainty of knowing the past operating conditions leads to a large uncertainty in analytically predicting the current condition of the tube material. Therefore, it is preferable to measure the current tube material condition and just use the analytical model to predict the future tube life. To provide reliable predictions of remaining tube life, the calculation model used in pcTUBE™ is combined with the results of the 'H' SCAN ׂ inspection. Creep damage and remaining life is computed for each tube in the furnace using inspection results and anticipated operating conditions. The initial damage state of each element (see Figure 19) in the analytical model is set using the inspection data. This approach closely approximates the manner in which damage develops during actual service. The diameter and wall thickness of the tube model also are set using the inspection data. Anticipated operating conditions used in the model include the number, duration and type cycles, outer surface tube temperature and heat flux along the tube, and internal pressure in the tube. Therefore, inspection results are combined with expected operating conditions to predict remaining life.Fig 20 |
Fig 21 |
CONCLUSION
Tube condition cannot be determined by one stand-alone technique, as the degree of damage within a particular tube may not lend itself to that specific NDE technique. The reliability of NDE evaluation of reformer furnace tube condition can be improved by combining a variety of advanced NDE techniques ('H' SCAN ׂ Technology) that individually monitor differing physical parameters. The advantages and disadvantages of each technique, when compared against each other, reduces the occurrence of false calls, improves tube condition assessment and can increase overall furnace reliability. Tube lives predicted using simple design methods do not reflect actual operating lives. Specialized stress analysis and life prediction models, such as the pcTUBE™ software, provide realistic service life predictions. These specialized models are not well suited to computing the condition of tubes in service unless past operating conditions are known very well, which is typically not the case. Coupling specialized analytical models, such as the WinTUBE™ software, with NDE results provides a realistic prediction of remaining tube life.REFERENCES
- Independent Metallurgical Engineering Report N52357 for IESCO client. (July 1996)
- Shibasaki, T.; Chiyoda Corporation. Private Communication to IESCO. (1996)
- Electromagnetic Techniques, Volume 4. ASNT Handbook Series.
- Warren, N.; Summary Report on Study of Prototype EM Inspection Technique for Reformer Tubes. Internal IESCO document. (June 30, 1995)
- Smith, N.; Non-Destructive Examination of In-Situ Reformer Tubes for Creep Damage. PVP Vol. 336. Structural Integrity, NDE, Risk and Material Performance for Petroleum, Process and Power. ASME (1996)
- Birring, A. S.; et al. Ultrasonic Methods for Detection of Service-Induced Damage in Fossil Plant Components. EPRI Funded RP -1865-7.
- Wang, D.; Parra, J.; Internal IESCO document 'H' SCAN ׂ development and client sample tubes ultrasonic and metallographic analysis results. (1995)
- Jaske, C. E.; Viswanathan. NACE Paper #90213. Predict Remaining Life of Equipment in High Temperature/Pressure Service. NACE. Corrosion '90.
- Mohri, T.; Shibasaki, T.; Takemura, K.; Feature of Creep Rupture Damage of Nb containing Catalyst Tubes for Steam Reformer Furnace. AIChE Ammonia Symposium. (1996)
- Shannon, B.; Hulhoven, F.; Internal IESCO document, samples and metallography results. (December 1998)
- Smith, N.; Shannon, B.; Assessing Creep Damage in Cast Furnace Tubes Using Nondestructive Examination 'H' SCAN Technology. AIChE Ammonia Symposium. (1997)
- Shannon, B.; Evaluating Creep Damage in Catalyst Tubes. Chiyoda Reformer Symposium, Shonan, Japan. (1998)
- Shell Oil Westhollow Research Center; Private Communication. (1999)
- Simonen, F. A.; Jaske, C. E.; A Computational Model for Predicting the Life of Tubes Used in Petrochemical Heater Service. Journal of Pressure Vessel Technology, Vol. 107, 239-246. (1985)
- Jaske, C. E.; Simonen, F. A.; Roach, D. B.; Predict Reformer Furnace Tube Life; Hydrocarbon Processing, 63-66. (January 1983)
- Jaske, C. E.; Simonen, F. A.; Creep-Rupture Properties for Use in the Life Assessment of Fired Heater Tubes. Proceedings of the First International Conference On Heat-Resistant Materials, ASM International, Materials Park, Ohio, 485-493. (1991)
- Calculation of Heater-Tube Thickness in Petroleum Refineries. API STD 530, American Petroleum Institute, Washington, D.C. (1996)
- Jaske, C. E.; Simonen, F. A.; User Manual for the Computer Program pcTUBE™ for Creep Analysis of Thick-Wall Tubes. CC Technologies Systems, Inc., Dublin, Ohio. (1993)
No comments:
Post a Comment