EHSQL team building , AMGreen and GreenkoGroupFounder Dr. Anil Chalamalasetty and Shri Mahesh Koli Sir,Shri Gautam Reddy,Dr.K.Pradeep,Dr. Rambabu P.,Shri H.Menon,Shri Ch.Srinivas Rao,Shri N. SeshaGiri, Shri
GSV Raja,Shri GVS Anand,Shri K.GangadharRao,Shri Madhav KG Shri Satish Babu, Shri Badusha V. Shaik, Shri Srinivas Reddy,Dr.V.S.John,Shri S. Simhachalam, Shri PVSN Raju,Shri B.B.K U.Maheswar Rao,Shri S.Tatayya,Shri S.K. Dash,Shri CH ApplaRaju,Shri LVV Rao EHSQL by Dr.A.N.GIRI-37.5Lakhs Viewed
Saturday, 5 December 2015
A blanket around the Earth
A blanket around the Earth
A layer of greenhouse gases – primarily water vapor, and including
much smaller amounts
of carbon dioxide, methane and nitrous oxide – acts as a thermal blanket
for the Earth, absorbing heat and warming the surface to a
life-supporting average of 59 degrees Fahrenheit (15 degrees Celsius).
Most climate scientists agree the main cause of the current global warming trend is human expansion of the "greenhouse effect"1 — warming that results when the atmosphere traps heat radiating from Earth toward space.
Certain gases in the atmosphere block heat from escaping. Long-lived
gases that remain semi-permanently in the atmosphere and do not respond
physically or chemically to changes in temperature are described as
"forcing" climate change. Gases, such as water vapor, which respond
physically or chemically to changes in temperature are seen as
"feedbacks."
Gases that contribute to the greenhouse effect include:
Water vapor. The most abundant
greenhouse gas, but importantly, it acts as a feedback to the climate.
Water vapor increases as the Earth's atmosphere warms, but so does the
possibility of clouds and precipitation, making these some of the most
important feedback mechanisms to the greenhouse effect.
Carbon dioxide (CO2). A minor but
very important component of the atmosphere, carbon dioxide is released
through natural processes such as respiration and volcano eruptions and
through human activities such as deforestation, land use changes, and
burning fossil fuels. Humans have increased atmospheric CO2
concentration by a third since the Industrial Revolution began. This is
the most important long-lived "forcing" of climate change.
Methane. A hydrocarbon gas produced both
through natural sources and human activities, including the
decomposition of wastes in landfills, agriculture, and especially rice
cultivation, as well as ruminant digestion and manure management
associated with domestic livestock. On a molecule-for-molecule basis,
methane is a far more active greenhouse gas than carbon dioxide, but
also one which is much less abundant in the atmosphere.
Nitrous oxide. A powerful greenhouse gas
produced by soil cultivation practices, especially the use of commercial
and organic fertilizers, fossil fuel combustion, nitric acid
production, and biomass burning.
Chlorofluorocarbons (CFCs). Synthetic
compounds entirely of industrial origin used in a number of
applications, but now largely regulated in production and release to the
atmosphere by international agreement for their ability to contribute
to destruction of the ozone layer. They are also greenhouse gases.
Not enough greenhouse effect: The planet Mars has a very thin
atmosphere, nearly all carbon dioxide. Because of the low atmospheric
pressure, and with little to no methane or water vapor to reinforce the
weak greenhouse effect, Mars has a largely frozen surface that shows no
evidence of life.
Too much greenhouse effect: The atmosphere of Venus, like Mars,
is nearly all carbon dioxide. But Venus has about 300 times as much
carbon dioxide in its atmosphere as Earth and Mars do, producing a
runaway greenhouse effect and a surface temperature hot enough to melt
lead.
On Earth, human activities are changing the natural greenhouse. Over
the last century the burning of fossil fuels like coal and oil has
increased the concentration of atmospheric carbon dioxide (CO2). This happens because the coal or oil burning process combines carbon with oxygen in the air to make CO2.
To a lesser extent, the clearing of land for agriculture, industry, and
other human activities have increased concentrations of greenhouse
gases.
The consequences of changing the natural atmospheric greenhouse are difficult to predict, but certain effects seem likely:
On average, Earth will become warmer. Some regions may welcome warmer temperatures, but others may not.
Warmer conditions will probably lead to more
evaporation and precipitation overall, but individual regions will vary,
some becoming wetter and others dryer.
A stronger greenhouse effect will warm the
oceans and partially melt glaciers and other ice, increasing sea level.
Ocean water also will expand if it warms, contributing further to sea
level rise.
Meanwhile, some crops and other plants may respond favorably to increased atmospheric CO2,
growing more vigorously and using water more efficiently. At the same
time, higher temperatures and shifting climate patterns may change the
areas where crops grow best and affect the makeup of natural plant
communities.
The role of human activity
In its Fourth Assessment Report, the Intergovernmental Panel on
Climate Change, a group of 1,300 independent scientific experts from
countries all over the world under the auspices of the United Nations,
concluded there's a more than 90 percent probability that human
activities over the past 250 years have warmed our planet.
The industrial activities that our modern civilization depends upon
have raised atmospheric carbon dioxide levels from 280 parts per million
to 400 parts per million in the last 150 years. The panel also
concluded there's a better than 90 percent probability that
human-produced greenhouse gases such as carbon dioxide, methane and
nitrous oxide have caused much of the observed increase in Earth's
temperatures over the past 50 years.
They said the rate of increase in global warming due to these gases
is very likely to be unprecedented within the past 10,000 years or more.
The panel's full Summary for Policymakers report is online at http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf.
Solar irradiance
It's reasonable to assume that changes in the sun's energy output
would cause the climate to change, since the sun is the fundamental
source of energy that drives our climate system.
Indeed, studies show that solar variability has played a role in past
climate changes. For example, a decrease in solar activity is thought
to have triggered the Little Ice Age between approximately 1650 and
1850, when Greenland was largely cut off by ice from 1410 to the 1720s
and glaciers advanced in the Alps.
But several lines of evidence show that current global warming cannot be explained by changes in energy from the sun:
Since 1750, the average amount of energy coming from the sun either remained constant or increased slightly.
If the warming were caused by a more active
sun, then scientists would expect to see warmer temperatures in all
layers of the atmosphere. Instead, they have observed a cooling in the
upper atmosphere, and a warming at the surface and in the lower parts of
the atmosphere. That's because greenhouse gasses are trapping heat in
the lower atmosphere.
Climate models that include solar irradiance
changes can’t reproduce the observed temperature trend over the past
century or more without including a rise in greenhouse gases.
Mike Lockwood, “Solar Change and Climate: an update in the light of the current exceptional solar minimum,” Proceedings of the Royal Society A, 2 December 2009, doi 10.1098/rspa.2009.0519;
Judith Lean, “Cycles and trends in solar irradiance and climate,” Wiley Interdisciplinary Reviews: Climate Change, vol. 1, January/February 2010, 111-122.
No comments:
Post a Comment