Natural-gas
processing
A natural-gas processing plant
Natural-gas
processing is a complex industrial process
designed to clean raw natural gas by separating impurities and various
non-methane hydrocarbons and fluids to produce what is known as pipeline
quality dry natural gas.[1]
Natural-gas processing begins at the well head. The
composition of the raw natural gas extracted from producing wells depends on
the type, depth, and location of the underground deposit and the geology of the
area. Oil and natural gas are often found together in the same reservoir. The
natural gas produced from oil wells is generally classified as associated-dissolved,
meaning that the natural gas is associated with or dissolved in crude oil.
Natural gas production absent any association with crude oil is classified as
“non-associated.” In 2004, 75 percent of U.S. wellhead production of natural
gas was non-associated.[2]
Most natural-gas production contains, to varying degrees,
small (two to eight carbons) hydrocarbon (any class of compound containing only
hydrogen and carbon; examples include methane gas (CH4), benzene (C6H6), and butane (C4H10). Although they exist
in a liquid state at underground pressures, these molecules will become gaseous
at normal atmospheric pressure. Collectively, they are called condensates or natural gas liquids
(NGLs). The natural gas extracted from coal reservoirs and mines (coalbed methane) is the primary exception,
being essentially a mix of mostly methane and carbon dioxide (about 10 percent).
Natural-gas processing plants purify raw natural gas produced from underground gas fields or extracted at the surface from
fluids produced by oil wells. A fully
operational plant delivers pipeline-quality natural gas that can be used as fuel
by residential, commercial and industrial consumers. In the plant, contaminants
are removed and heavier hydrocarbons are captured for other commercial uses.
For economic reasons, however, some plants may be designed to yield an
intermediate product typically containing over 90 per cent pure methane and smaller amounts of nitrogen, carbon dioxide, and sometimes ethane. This can be further processed in downstream plants
or used as feedstock for chemicals manufacturing.
Types of raw-natural-gas wells
Raw natural gas comes primarily from
any one of three types of wells: crude oil wells, gas wells, and condensate
wells.
Natural gas that comes from crude oil
wells is typically termed associated gas. This gas can have existed as a
gas cap above the crude oil in the underground formation, or could have been
dissolved in the crude oil.
Natural gas from gas wells and from
condensate wells, in which there is little or no crude oil, is termed non-associated
gas. Gas wells typically produce only raw natural gas, while condensate
wells produce raw natural gas along with other low molecular weight
hydrocarbons. Those that are liquid at ambient conditions (i.e., pentane and heavier) are called natural gas
condensate (sometimes also called natural gasoline or simply condensate).
Natural gas is termed sweet gas
when relatively free of hydrogen sulfide;
however, gas that does contain hydrogen sulfide is called sour gas.
Raw natural gas can also come from
methane deposits in the pores of coal seams, and especially in a more
concentrated state of adsorption onto the
surface of the coal itself. Such gas is referred to as coalbed gas or coalbed methane (Coal seam gas in Australia). Coalbed gas
has become an important source of energy in recent decades.
Contaminants in raw natural gas
Raw natural gas
typically consists primarily of methane (CH4),
the shortest and lightest hydrocarbon
molecule. It also contains varying amounts of:
- Heavier gaseous hydrocarbons: ethane (C2H6), propane (C3H8), normal butane (n-C4H10), isobutane (i-C4H10), pentanes and even higher molecular weight hydrocarbons. When processed and purified into finished by-products, all of these are collectively referred to as NGL (Natural Gas Liquids).
- Acid gases: carbon dioxide (CO2), hydrogen sulfide (H2S) and mercaptans such as methanethiol (CH3SH) and ethanethiol (C2H5SH).
- Other gases: nitrogen (N2) and helium (He).
- Water: water vapor and liquid water. Also dissolved salts and dissolved gases (acids).
- Liquid hydrocarbons: perhaps some natural gas condensate (also referred to as casinghead gasoline or natural gasoline) and/or crude oil.
- Mercury: very small amounts of mercury primarily in elemental form, but chlorides and other species are possibly present.[3]
- Radioactive gas: radon. Also, when radon is present, decay products of radon, such as polonium, can accumulate in specific locations within processing equipment.
The raw natural
gas must be purified to meet the quality standards specified by the major pipeline
transmission and distribution companies. Those quality standards vary from
pipeline to pipeline and are usually a function of a pipeline system's design
and the markets that it serves. In general, the standards specify that the
natural gas:
- Be within a specific range of heating value (caloric value). For example, in the United States, it should be about 1035 ± 5% BTU per cubic foot of gas at 1 atmosphere and 60 degrees Fahrenheit (41 MJ ± 5% per cubic metre of gas at 1 atmosphere and 15.6 degrees Celsius).
- Be delivered at or above a specified hydrocarbon dew point temperature (below which some of the hydrocarbons in the gas might condense at pipeline pressure forming liquid slugs that could damage the pipeline).
- Dew-point adjustment serves the reduction of the concentration of water and heavy hydrocarbons in natural gas to such an extent that no condensation occurs during the ensuing transport in the pipelines
- Be free of particulate solids and liquid water to prevent erosion, corrosion or other damage to the pipeline.
- Be dehydrated of water vapor sufficiently to prevent the formation of methane hydrates within the gas processing plant or subsequently within the sales gas transmission pipeline. A typical water content specification in the U.S. is that gas must contain no more than seven pounds of water per million cubic feet (MMCFD) of gas.[4][5]
- Contain no more than trace amounts of components such as hydrogen sulfide, carbon dioxide, mercaptans, and nitrogen. The most common specification for hydrogen sulfide content is 0.25 grain H2S per 100 cubic feet of gas, or approximately 4 ppm. Specifications for CO2 typically limit the content to no more than two or three percent.
- Maintain mercury at less than detectable limits (approximately 0.001 ppb by volume) primarily to avoid damaging equipment in the gas processing plant or the pipeline transmission system from mercury amalgamation and embrittlement of aluminum and other metals.[3][6][7]
Description of a natural-gas
processing plant
There are a
great many ways in which to configure the various unit processes used in the processing of
raw natural gas. The block flow diagram
below is a generalized, typical configuration for the processing of raw natural
gas from non-associated gas wells. It shows how raw natural gas is processed
into sales gas pipelined to the end user markets.[8][9][10][11][12] It also shows how processing of
the raw natural gas yields these byproducts:
- Natural-gas condensate
- Sulfur
- Ethane
- Natural-gas liquids (NGL): propane, butanes and C5+ (which is the commonly used term for pentanes plus higher molecular weight hydrocarbons)
Raw natural gas
is commonly collected from a group of adjacent wells and is first processed at
that collection point for removal of free liquid water and natural gas
condensate. The condensate is usually then transported to an oil refinery and
the water is disposed of as wastewater.
The raw gas is
then pipelined to a gas processing plant where the initial purification is
usually the removal of acid gases (hydrogen sulfide and carbon dioxide). There
are many processes that are available for that purpose as shown in the flow
diagram, but amine treating
is the process that was historically used. However, due to a range of
performance and environmental constraints of the amine process, a newer
technology based on the use of polymeric membranes to separate the carbon dioxide
and hydrogen sulfide from the natural gas stream has gained increasing
acceptance.
The acid gases,
if present, are removed by membrane or amine treating can then be routed into a
sulfur recovery unit which converts the hydrogen sulfide in the acid gas into
either elemental sulfur or sulfuric acid. Of the processes available for these
conversions, the Claus process
is by far the most well known for recovering elemental sulfur, whereas the
conventional Contact process
and the Wet sulfuric
acid process are the most used technologies for recovering sulfuric acid.
The residual gas from the Claus process is commonly called tail gas and that gas is then processed in a tail gas treating unit (TGTU) to recover and recycle residual sulfur-containing compounds back into the Claus unit. Again, as shown in the flow diagram, there are a number of processes available for treating the Claus unit tail gas and for that purpose a WSA Process is also very suitable since it can work autothermal on tail gasses.
The residual gas from the Claus process is commonly called tail gas and that gas is then processed in a tail gas treating unit (TGTU) to recover and recycle residual sulfur-containing compounds back into the Claus unit. Again, as shown in the flow diagram, there are a number of processes available for treating the Claus unit tail gas and for that purpose a WSA Process is also very suitable since it can work autothermal on tail gasses.
The next step
in the gas processing plant is to remove water vapor from the gas using either
the regenerable absorption
in liquid triethylene glycol
(TEG)[5], commonly referred to as glycol dehydration,
deliquescent chloride desiccants, and or a Pressure Swing
Adsorption (PSA) unit which is regenerable adsorption using a solid adsorbent.[13] Other newer processes like membranes
may also be considered.
Mercury is then
removed by using adsorption processes (as shown in the flow diagram) such as activated carbon or regenerable molecular sieves.[3]
Although not
common, nitrogen is sometimes removed and rejected using one of the three
processes indicated on the flow diagram:
- Cryogenic process[14] using low temperature distillation. This process can be modified to also recover helium, if desired.
- Absorption process[15] using lean oil or a special solvent[16] as the absorbent.
- Adsorption process using activated carbon or molecular sieves as the adsorbent. This process may have limited applicability because it is said to incur the loss of butanes and heavier hydrocarbons.
The next step
is to recover the natural gas liquids (NGL) for which most large, modern gas
processing plants use another cryogenic low temperature distillation process
involving expansion of the gas through a turbo-expander followed by distillation in
a demethanizing fractionating
column.[17][18] Some gas processing plants use
lean oil absorption process[15] rather than the cryogenic
turbo-expander process.
The residue gas
from the NGL recovery section is the final, purified sales gas which is
pipelined to the end-user markets.
The recovered
NGL stream is sometimes processed through a fractionation train consisting of
three distillation towers in series: a deethanizer, a depropanizer and a
debutanizer. The overhead product from the deethanizer is ethane and the
bottoms are fed to the depropanizer. The overhead product from the depropanizer
is propane and the bottoms are fed to the debutanizer. The overhead product
from the debutanizer is a mixture of normal and iso-butane, and the bottoms
product is a C5+ mixture. The recovered streams of propane, butanes
and C5+ may be "sweetened" in a Merox
process unit to convert undesirable mercaptans into disulfides and, along with the recovered
ethane, are the final NGL by-products from the gas processing plant. Currently,
most cryogenic plants do not include fractionation for economic reasons, and
the NGL stream is instead transported as a mixed product to standalone
fractionation complexes located near refineries or chemical plants that use the
components for feedstock. In case
laying pipeline is not possible for geographical reason,or the distance between
source and consumer exceed 3000km, natural gas is then transported by ship as LNG
(liquefied natural gas) and again converted into its gaseous state in the
vicinity of the consumer.
Consumption
Natural gas
consumption patterns, across nations, vary based on access. Countries with
large reserves tend to handle the raw-material natural gas more generously,
while countries with scarce or lacking resources tend to be more economical.
Despite the considerable findings, the predicted availability of the
natural-gas reserves has hardly changed.
Applications of natural gas
- Fuel for industrial heating and desiccation process
- Fuel for the operation of public and industrial power stations
- Household fuel for cooking, heating and providing hot water
- Fuel for environmentally friendly liquid natural gas vehicles
- Raw material for chemical synthesis
- Raw material for large-scale fuel production using gas-to-liquid (GTL) process (e.g. to produce sulphur-and aromatic-free diesel with low-emission combustion)
No comments:
Post a Comment