All natural waters contain, in various concentrations, dissolved
salts which dissociate in water to form charged ions. Positively charged
ions are called cations; negatively charged ions are called anions.
Ionic impurities can seriously affect the reliability and operating
efficiency of a boiler or process system. Overheating caused by the
buildup of scale or deposits formed by these impurities can lead to
catastrophic tube failures, costly production losses, and unscheduled
downtime. Hardness ions, such as calcium and magnesium, must be removed
from the water supply before it can be used as boiler feedwater. For
high-pressure boiler feedwater systems and many process systems, nearly
complete removal of all ions, including carbon dioxide and silica, is
required. Ion exchange systems are used for efficient removal of
dissolved ions from water.
Ion exchangers exchange one ion for another, hold it temporarily, and then release it to a regenerant solution. In an ion exchange system, undesirable ions in the water supply are replaced with more acceptable ions. For example, in a sodium zeolite softener, scale-forming calcium and magnesium ions are replaced with sodium ions.
HISTORY
In 1905, Gans, a German chemist, used synthetic aluminosilicate materials known as zeolites in the first ion exchange water softeners. Although aluminosilicate materials are rarely used today, the term "zeolite softener" is commonly used to describe any cation exchange process.
The synthetic zeolite exchange material was soon replaced by a naturally occurring material called Greensand. Greensand had a lower exchange capacity than the synthetic material, but its greater physical stability made it more suitable for industrial applications. Capacity is defined as the amount of exchangeable ions a unit quantity of resin will remove from a solution. It is usually expressed in kilograins per cubic foot as calcium carbonate.
Figure 1 .Microscopic view of cellular resin beads (20-50 mesh) of a sulfonated styrene-divinylbenzene strong acid cation exhcanger. (Courtesy of Rohm and Haas Company.)
The development of a sulfonated coal cation exchange medium, referred to as carbonaceous zeolite, extended the application of ion exchange to hydrogen cycle operation, allowing for the reduction of alkalinity as well as hardness. Soon, an anion exchange resin (a condensation product of polyamines and formaldehyde) was developed. The new anion resin was used with the hydrogen cycle cation resin in an attempt to demineralize (remove all dissolved salts from) water. However, early anion exchangers were unstable and could not remove such weakly ionized acids as silicic and carbonic acid.
In the middle 1940's, ion exchange resins were developed based on the copolymerization of styrene cross-linked with divinylbenzene. These resins were very stable and had much greater exchange capacities than their predecessors. The polystyrene-divinylbenzene-based anion exchan-ger could remove all anions, including silicic and carbonic acids. This innovation made the complete demineralization of water possible.
Polystyrene-divinylbenzene resins are still used in the majority of ion exchange applications. Although the basic resin components are the same, the resins have been modified in many ways to meet the requirements of specific applications and provide a longer resin life. One of the most significant changes has been the development of the macroreticular, or macroporous, resin structure.
Standard Celular resins, such as those shown in Figure 1, have a permeable membrane structure. This structure meets the chemical and physical requirements of most applications. However, in some applications the physical strength and chemical resistance required of the resin structure is beyond the capabilities of the typical gel structure. Macroreticular resins feature discrete pores within a highly cross-linked polystyrene-divinylbenzene matrix. These resins possess a higher physical strength than gels, as well as a greater resistance to thermal degradation and oxidizing agents. Macroreticular anion resins
(Figure 2) Microscopic view of a macroporous strong base anion resin. (Courtesy of Dow Chemical Company.) are also more resistant to organic fouling due to their more porous structure. In addition to polystyrene-divinylbenzene resins
(Figure 3), Chemical structural formula of sulfonic strong acid cation resin (Amberlite IR-120), (XL): cross link; (PC): polymer chain; (ES): exchange site; (EI): exchangeable ion.
there are newer resins with an acrylic structure, which increases their resistance to organic fouling.
In addition to a plastic matrix, ion exchange resin contains ionizable functional groups. These functional groups consist of both positively charged cation elements and negatively charged anion elements. However, only one of the ionic species is mobile. The other ionic group is attached to the bead structure.
Figure 4 is a schematic illustration of a strong acid cation exchange resin bead,
which has ionic sites consisting of immobile anionic (SO3¯) radicals and
mobile sodium cations (Na+). Ion exchange occurs when raw water ions diffuse
into the bead structure and exchange for the mobile portion of the functional
group. Ions displaced from the bead diffuse back into the water solution.
CLASSIFICATIONS OF ION EXCHANGE RESINS
Ionizable groups attached to the resin bead determine the functional capability of the resin. Industrial water treatment resins are classified into four basic categories:
SAC resins derive their functionality from sulfonic acid groups (HSO3¯). When used in demineralization, SAC resins remove nearly all raw water cations, replacing them with hydrogen ions, as shown below:
The exchange reaction is reversible. When its capacity is exhausted, the resin can be regenerated with an excess of mineral acid.
Strong acid cation exchangers function well at all pH ranges. These resins have found a wide range of applications. For example, they are used in the sodium cycle (sodium as the mobile ion) for softening and in the hydrogen cycle for decationization.
Weak acid cation exchange resins derive their exchange activity from a carboxylic group (-COOH). When operated in the hydrogen form, WAC resins remove cations that are associated with alkalinity, producing carbonic acid as shown:
These reactions are also reversible and permit the return of the exhausted WAC resin to the regenerated form. WAC resins are not able to remove all of the cations in most water supplies. Their primary asset is their high regeneration efficiency in comparison with SAC resins. This high efficiency reduces the amount of acid required to regenerate the resin, thereby reducing the waste acid and minimizing disposal problems.
Weak acid cation resins are used primarily for softening and dealkalization of high-hardness, high-alkalinity waters, frequently in conjunction with SAC sodium cycle polishing systems. In full demineralization systems, the use of WAC and SAC resins in combination provides the economy of the more efficient WAC resin along with the full exchange capabilities of the SAC resin.
SBA resins derive their functionality from quaternary ammonium functional groups. Two types of quaternary ammonium groups, referred to as Type I and Type II, are used. Type I sites have three methyl groups:
In a Type II resin one of the methyl groups is replaced with an
ethanol group. The Type I resin has a greater stability than the Type II
resin and is able to remove more of the weakly ionized acids. Type II
resins provide a greater regeneration efficiency and a greater capacity
for the same amount of regenerant chemical used.
When in the hydroxide form, SBA resins remove all commonly encountered anions as shown below:
As with the cation resins, these reactions are reversible, allowing for the regeneration of the resin with a strong alkali, such as caustic soda, to return the resin to the hydroxide form.
Weak base resin functionality originates in primary (R-NH2), secondary (R-NHR'), or tertiary (R-NR'2) amine groups. WBA resins readily re-move sulfuric, nitric, and hydrochloric acids, as represented by the following reaction:
SODIUM ZEOLITE SOFTENING
Sodium zeolite softening is the most widely applied use of ion exchange. In zeolite softening, water containing scale-forming ions, such as calcium and magnesium, passes through a resin bed containing SAC resin in the sodium form. In the resin, the hardness ions are exchanged with the sodium, and the sodium diffuses into the bulk water solution. The hardness-free water, termed soft water, can then be used for low to medium pressure boiler feedwater, reverse osmosis system makeup, some chemical processes, and commercial applications, such as laundries.
Principles of Zeolite Softening
The removal of hardness from water by a zeolite softening process is described by the following reaction:
Water from a properly operated zeolite softener is nearly free from detectable hardness. How-ever, some small amounts of hardness, known as leakage, are present in the treated water. The level of hardness leakage is dependent on the hardness and sodium level in the influent water and the amount of salt used for regeneration.
Figure 8-5 is a typical profile of effluent hardness from a zeolite softener during a service cycle. After final rinse, the softener produces a low, nearly constant level of hardness until the ion exchange resin nears exhaustion. At exhaustion, the effluent hardness increases sharply, and regeneration is required.
As illustrated by the softening reactions, SAC resin readily accepts calcium and magnesium ions in exchange for sodium ions. When exhausted resin is regenerated, a high concentration of sodium ions is applied to the resin to replace calcium and magnesium. The resin is treated with a 10% sodium chloride solution, and regeneration proceeds according to the following equation:
During regeneration, a large excess of regenerant (approximately 3 times the amount of calcium and magnesium in the resin) is used. The eluted hardness is removed from the softening unit in the waste brine and by rinsing.
After regeneration, small residual amounts of hardness remain in the resin. If resin is allowed to sit in a stagnant vessel of water, some hardness will diffuse into the bulk water. Therefore, at the initiation of flow, the water effluent from a zeolite softener can contain hardness even if it has been regenerated recently. After a few minutes of flow, the hardness is rinsed from the softener, and the treated water is soft.
The duration of a service cycle depends on the rate of softener flow, the hardness level in the water, and the amount of salt used for regeneration. Table 8-1 shows the effect of regenerant level on the softening capacity of a gelular strong cation resin. Note that the capacity of the resin increases as the regenerant dosage increases, but the increase is not proportional. The regeneration is less efficient at the higher regenerant levels. Therefore, softener operating costs increase as the regenerant level increases. As shown by the data in Table 8-1, a 150% increase in regenerant salt provides only a 67% increase in operating capacity.
Table 8-1. Effect of regenerant salt level on strong acid cation resin softening capacity.
Equipment
The equipment used for sodium zeolite softening consists of a softener exchange vessel, control valves and piping, and a system for brining, or regenerating, the resin. Usually, the softener tank is a vertical steel pressure vessel with dished heads as shown in Figure 8-6. Major features of the softening vessel include an inlet distribution system, free-board space, a regenerant distribution system, ion exchange resin, and a resin-retaining underdrain collection system.
The inlet distribution system is usually located at the top of the tank. The inlet system provides even distribution of influent water. This prevents the water from hollowing out flow channels in the resin bed, which would reduce system capacity and effluent quality. The inlet system also acts as a collector for backwash water.
The inlet distributor consists of a central header/hub with distributing laterals/radials or simple baffle plates, which direct the flow of water evenly over the resin bed. If water is not prevented from flowing directly onto the bed or tank walls, channeling will result.
The volume between the inlet distributor and the top of the resin bed is called the free-board space. The free-board allows for the expansion of the resin during the backwash portion of the regeneration without loss of resin. It should be a minimum of 50% of the resin volume (80% preferred).
The regenerant distributor is usually a header-lateral system that evenly distributes the regenerant brine during regeneration. The location of the distributor, 6 in. above the top of the resin bed, prevents the dilution of regenerant by water in the free-board space. It also reduces water and time requirements for displacement and fast rinse. The regenerant distributor should be secured to the tank structure to prevent breakage and subsequent channeling of the regenerant.
Water is softened by the bed of strong acid cation exchange resin in the sodium form. The quantity of resin required depends on the water flow, total hardness, and time desired between regeneration cycles. A minimum bed depth of 24 in. is recommended for all systems.
The underdrain system, located at the bottom of the vessel, retains ion exchange resin in the tank, evenly collects the service flow, and evenly distributes the backwash flow. Uneven collection of water in service or uneven distribution of the backwash water can result in channeling, resin fouling, or resin loss.
Although several underdrain designs are used, there are two primary types–subfill and resin-retaining. A subfill system consists of multiple layers of support media (such as graded gravel or anthracite) which support the resin, and a collection system incorporating drilled pipes or subfill strainers. As long as the support layers remain intact, the resin will remain in place. If the supporting media becomes disturbed, usually due to improper backwash, the resin can move through the disrupted layers and exit the vessel. A resin-retaining collector, such as a screened lateral or profile wire strainer, is more expensive than a subfill system but protects against resin loss.
The main valve and piping system directs the flow of water and regenerant to the proper locations. The valve system consists of a valve nest or a single multiport valve. A valve nest includes six main valves: service inlet and outlet, backwash inlet and outlet, regenerant inlet, and regenerant/rinse drain. The valves may be operated manually, or automatically controlled by air, electrical impulse, or water pressure. In some systems, a single multiport valve is used in place of the valve nest. As the valve rotates through a series of fixed positions, ports in the valve direct flow in the same manner as a valve nest. Multiport valves can eliminate operational errors caused by opening of the incorrect valve but must be properly maintained to avoid leaks through the port seals.
The brining system consists of salt dissolving/brine measuring equipment, and dilution control equipment to provide the desired regenerant strength. The dissolving/measuring equipment is designed to provide the correct amount of concentrated brine (approximately 26% NaCl) for each regeneration, without allowing any undissolved salt into the resin. Most systems use a float-operated valve to control the fill and draw-down of the supply tank, thereby controlling the amount of salt used in the regeneration. Usually, the concentrated brine is removed from the tank by means of an eductor system, which also dilutes the brine to the optimum regenerant strength (8-10% NaCl). The brine can also be pumped from the concentrated salt tank and mixed with dilution water to provide the desired regenerant strength.
Softener Operation
A sodium zeolite softener operates through two basic cycles: the service cycle, which produces soft water for use, and the regeneration cycle, which restores resin capacity at exhaustion.
In the service cycle, water enters the softener through the inlet distribution system and flows through the bed. The hardness ions diffuse into the resin and exchange with sodium ions, which return to the bulk water. Soft water is collected in the underdrain system and discharged. Service water flow to the softener should be as constant as possible to prevent sudden surges and frequent on-off operation.
Due to resin requirements and vessel designs, the softening operation is most efficient when a service flow rate between 6 and 12 gpm per square foot of resin surface area is maintained. Most equipment is designed to operate in this range, but some special designs utilize a deep resin bed to permit operation at 15-20 gpm/ft². Continuous operation above the manufacturer's suggested limits can lead to bed compaction, channeling, premature hardness breakthrough, and hardness leakage. Operating well below the manufacturer's recommended flow rates can also negatively affect softener performance. At low flow rates, the water is not sufficiently distributed, and the optimum resin-water contact cannot take place.
When a softener is exhausted, the resin must be regenerated. Monitoring of the effluent hardness reveals resin exhaustion. When hardness increases, the unit is exhausted. Automatic monitors pro-vide a more constant indication of the condition of the softener than periodic operator sampling and testing, but require frequent maintenance to ensure accuracy. Many facilities regenerate softeners before exhaustion, based on a predetermined time period or number of gallons processed.
Most softening systems consist of more than one softener. They are often operated so that one softener is in regeneration or standby while the other units are in service. This ensures an uninterrupted flow of soft water. Prior to placing a standby softener into service, the unit should be rinsed to remove any hardness that has entered the water during the standing time.
Softener Regeneration
The regeneration cycle of a sodium zeolite softener consists of four steps: backwash, regeneration (brining), displacement (slow rinse), and fast rinse.
Backwash. During the service cycle, the downward flow of water causes suspended material to accumulate on the resin bed. Resin is an excellent filter and can trap particulate matter that has passed through upstream filtration equipment. The backwash step removes accumulated material and reclassifies the resin bed. In the backwash step, water flows from the underdrain distributor up through the resin bed and out the service distributor to waste. The upward flow lifts and expands the resin, allowing for removal of particulate material and resin fines and the classification of the resin. Resin classification brings the smaller beads to the top of the unit while the larger beads settle to the bottom. This enhances the distribution of the regenerant chemical and service water.
Backwashing should continue for a minimum of 10 min or until effluent from the backwash outlet is clear. The backwash flow should be sufficient to expand the resin bed volume by 50% or more, depending on the available free-board. Insufficient backwash can lead to bed fouling and channeling. Excessive backwash flow rates result in the loss of resin. Backwash flow rates usually vary between 4-8 (ambient temperature) and 12-15 (hot service) gpm per square foot of bed area, but each manufacturer's recommendation should be followed. The ability of water to expand the resin is greatly affected by temperature. Less flow is required to expand the bed with cold water than with warm water. Resin bed expansion should be checked regularly and the flow rate adjusted as needed to maintain proper bed expansion.
Usually, the backwash water is filtered raw water. Water leaving the backwash outlet is unchanged in chemistry but can contain suspended solids. In order to conserve water, the backwash effluent can be returned to the clarifier or filter influent for treatment.
Regeneration (Brining). After backwash, regenerant brine is applied. The brine stream enters the unit through the regenerant distributor and flows down through the resin bed at a slow rate (usually between 0.5 and 1 gpm per square foot of resin). Brine flow is collected through the underdrain and sent to waste. The slow flow rate increases contact between the brine and resin. To achieve optimum efficiency from the brine, the solution strength should be 10% during brine introduction.
Displacement (Slow Rinse). Following the introduction of regenerant brine, a slow flow of water continues through the regenerant distribution system. This water flow displaces the regenerant through the bed at the desired flow rate. The displacement step completes the regeneration of the resin by ensuring proper contact of the regenerant with the bottom of the resin bed. The flow rate for the displacement water is usually the same rate used for the dilution of the concentrated brine. The duration of the displacement step should be sufficient to allow for approximately one resin bed volume of water to pass through the unit. This provides a "plug" of displacement water which gradually moves the brine completely through the bed.
Fast Rinse. After completion of the displacement rinse, water is introduced through the inlet distributor at a high flow rate. This rinse water removes the remaining brine as well as any residual hardness from the resin bed. The fast rinse flow rate is normally between 1.5 and 2 gpm per square foot of resin. Sometimes it is deter-mined by the service rate for the softener.
Initially, the rinse effluent contains large amounts of hardness and sodium chloride. Usually, hardness is rinsed from the softener before excess sodium chloride. In many operations, the softener can be returned to service as soon as the hardness reaches a predetermined level, but some uses require rinsing until the effluent chlorides or conductivity are near influent levels. An effective fast rinse is important to ensure high effluent quality during the service run. If the softener has been in standby following a regeneration, a second fast rinse, known as a service rinse, can be used to remove any hardness that has entered the water during standby.
HOT ZEOLITE SOFTENING
Zeolite softeners can be used to remove residual hardness in the effluent from a hot process lime or lime-soda softener. The hot process effluent flows through filters and then through a bed of strong acid cation resin in the sodium form (Figure 8-7). The equipment and operation of a hot zeolite softener is identical to that of an ambient temperature softener, except that the valves, piping, controllers, and instrumentation must be suitable for the high temperature (220-250°F). Standard strong cation resin can be used at temperatures of up to 270°F, but for a longer service life a premium gel or macroreticular resin is recommended. When operating a zeolite system following a hot process softener, it is important to design the system to eliminate flow surges in the hot lime unit. Common designs include the use of backwash water storage tanks in the hot lime unit and extended slow rinses for the zeolite in lieu of a standard fast rinse.
Applications and Advantages
Scale and deposit buildup in boilers and the formation of insoluble soap curds in washing operations have created a large demand for softened water. Because sodium zeolite softeners are able to satisfy this demand economically, they are widely used in the preparation of water for low and medium pressure boilers, laundries, and chemical processes. Sodium zeolite softening also offers the following advantages over other softening methods:
Although sodium zeolite softeners efficiently re-duce the amount of dissolved hardness in a water supply, the total solids content, alkalinity, and silica in the water remain unaffected. A sodium zeolite softener is not a direct replacement for a hot lime-soda softener. Plants that have replaced their hot process softeners with only zeolite softeners have experienced problems with silica and alkalinity levels in their boilers.
Because the resin is such an efficient filter, sodium zeolite softeners do not function efficiently on turbid waters. Continued operation with an influent turbidity in excess of 1.0 JTU causes bed fouling, short service runs, and poor effluent quality. Most city and well waters are suitable, but many surface supplies must be clarified and filtered before use.
The resin can be fouled by heavy metal contaminants, such as iron and aluminum, which are not removed during the course of a normal regeneration. If excess iron or manganese is present in the water supply, the resin must be cleaned periodically. Whenever aluminum coagulants are used ahead of zeolite softeners, proper equipment operation and close control of clarifier pH are essential to good softener performance.
Strong oxidizing agents in the raw water attack and degrade the resin. Chlorine, present in most municipal supplies, is a strong oxidant and should be removed prior to zeolite softening by activated carbon filtration or reaction with sodium sulfite.
Ion exchangers exchange one ion for another, hold it temporarily, and then release it to a regenerant solution. In an ion exchange system, undesirable ions in the water supply are replaced with more acceptable ions. For example, in a sodium zeolite softener, scale-forming calcium and magnesium ions are replaced with sodium ions.
HISTORY
In 1905, Gans, a German chemist, used synthetic aluminosilicate materials known as zeolites in the first ion exchange water softeners. Although aluminosilicate materials are rarely used today, the term "zeolite softener" is commonly used to describe any cation exchange process.
The synthetic zeolite exchange material was soon replaced by a naturally occurring material called Greensand. Greensand had a lower exchange capacity than the synthetic material, but its greater physical stability made it more suitable for industrial applications. Capacity is defined as the amount of exchangeable ions a unit quantity of resin will remove from a solution. It is usually expressed in kilograins per cubic foot as calcium carbonate.
Figure 1 .Microscopic view of cellular resin beads (20-50 mesh) of a sulfonated styrene-divinylbenzene strong acid cation exhcanger. (Courtesy of Rohm and Haas Company.)
The development of a sulfonated coal cation exchange medium, referred to as carbonaceous zeolite, extended the application of ion exchange to hydrogen cycle operation, allowing for the reduction of alkalinity as well as hardness. Soon, an anion exchange resin (a condensation product of polyamines and formaldehyde) was developed. The new anion resin was used with the hydrogen cycle cation resin in an attempt to demineralize (remove all dissolved salts from) water. However, early anion exchangers were unstable and could not remove such weakly ionized acids as silicic and carbonic acid.
In the middle 1940's, ion exchange resins were developed based on the copolymerization of styrene cross-linked with divinylbenzene. These resins were very stable and had much greater exchange capacities than their predecessors. The polystyrene-divinylbenzene-based anion exchan-ger could remove all anions, including silicic and carbonic acids. This innovation made the complete demineralization of water possible.
Polystyrene-divinylbenzene resins are still used in the majority of ion exchange applications. Although the basic resin components are the same, the resins have been modified in many ways to meet the requirements of specific applications and provide a longer resin life. One of the most significant changes has been the development of the macroreticular, or macroporous, resin structure.
Standard Celular resins, such as those shown in Figure 1, have a permeable membrane structure. This structure meets the chemical and physical requirements of most applications. However, in some applications the physical strength and chemical resistance required of the resin structure is beyond the capabilities of the typical gel structure. Macroreticular resins feature discrete pores within a highly cross-linked polystyrene-divinylbenzene matrix. These resins possess a higher physical strength than gels, as well as a greater resistance to thermal degradation and oxidizing agents. Macroreticular anion resins
(Figure 2) Microscopic view of a macroporous strong base anion resin. (Courtesy of Dow Chemical Company.) are also more resistant to organic fouling due to their more porous structure. In addition to polystyrene-divinylbenzene resins
(Figure 3), Chemical structural formula of sulfonic strong acid cation resin (Amberlite IR-120), (XL): cross link; (PC): polymer chain; (ES): exchange site; (EI): exchangeable ion.
there are newer resins with an acrylic structure, which increases their resistance to organic fouling.
In addition to a plastic matrix, ion exchange resin contains ionizable functional groups. These functional groups consist of both positively charged cation elements and negatively charged anion elements. However, only one of the ionic species is mobile. The other ionic group is attached to the bead structure.
CLASSIFICATIONS OF ION EXCHANGE RESINS
Ionizable groups attached to the resin bead determine the functional capability of the resin. Industrial water treatment resins are classified into four basic categories:
-
Strong Acid Cation (SAC)
-
Weak Acid Cation (WAC)
-
Strong Base Anion (SBA)
-
Weak Base Anion (WBA)
SAC resins derive their functionality from sulfonic acid groups (HSO3¯). When used in demineralization, SAC resins remove nearly all raw water cations, replacing them with hydrogen ions, as shown below:
The exchange reaction is reversible. When its capacity is exhausted, the resin can be regenerated with an excess of mineral acid.
Strong acid cation exchangers function well at all pH ranges. These resins have found a wide range of applications. For example, they are used in the sodium cycle (sodium as the mobile ion) for softening and in the hydrogen cycle for decationization.
Weak acid cation exchange resins derive their exchange activity from a carboxylic group (-COOH). When operated in the hydrogen form, WAC resins remove cations that are associated with alkalinity, producing carbonic acid as shown:
These reactions are also reversible and permit the return of the exhausted WAC resin to the regenerated form. WAC resins are not able to remove all of the cations in most water supplies. Their primary asset is their high regeneration efficiency in comparison with SAC resins. This high efficiency reduces the amount of acid required to regenerate the resin, thereby reducing the waste acid and minimizing disposal problems.
Weak acid cation resins are used primarily for softening and dealkalization of high-hardness, high-alkalinity waters, frequently in conjunction with SAC sodium cycle polishing systems. In full demineralization systems, the use of WAC and SAC resins in combination provides the economy of the more efficient WAC resin along with the full exchange capabilities of the SAC resin.
SBA resins derive their functionality from quaternary ammonium functional groups. Two types of quaternary ammonium groups, referred to as Type I and Type II, are used. Type I sites have three methyl groups:
When in the hydroxide form, SBA resins remove all commonly encountered anions as shown below:
As with the cation resins, these reactions are reversible, allowing for the regeneration of the resin with a strong alkali, such as caustic soda, to return the resin to the hydroxide form.
Weak base resin functionality originates in primary (R-NH2), secondary (R-NHR'), or tertiary (R-NR'2) amine groups. WBA resins readily re-move sulfuric, nitric, and hydrochloric acids, as represented by the following reaction:
SODIUM ZEOLITE SOFTENING
Sodium zeolite softening is the most widely applied use of ion exchange. In zeolite softening, water containing scale-forming ions, such as calcium and magnesium, passes through a resin bed containing SAC resin in the sodium form. In the resin, the hardness ions are exchanged with the sodium, and the sodium diffuses into the bulk water solution. The hardness-free water, termed soft water, can then be used for low to medium pressure boiler feedwater, reverse osmosis system makeup, some chemical processes, and commercial applications, such as laundries.
Principles of Zeolite Softening
The removal of hardness from water by a zeolite softening process is described by the following reaction:
Water from a properly operated zeolite softener is nearly free from detectable hardness. How-ever, some small amounts of hardness, known as leakage, are present in the treated water. The level of hardness leakage is dependent on the hardness and sodium level in the influent water and the amount of salt used for regeneration.
Figure 8-5 is a typical profile of effluent hardness from a zeolite softener during a service cycle. After final rinse, the softener produces a low, nearly constant level of hardness until the ion exchange resin nears exhaustion. At exhaustion, the effluent hardness increases sharply, and regeneration is required.
As illustrated by the softening reactions, SAC resin readily accepts calcium and magnesium ions in exchange for sodium ions. When exhausted resin is regenerated, a high concentration of sodium ions is applied to the resin to replace calcium and magnesium. The resin is treated with a 10% sodium chloride solution, and regeneration proceeds according to the following equation:
During regeneration, a large excess of regenerant (approximately 3 times the amount of calcium and magnesium in the resin) is used. The eluted hardness is removed from the softening unit in the waste brine and by rinsing.
After regeneration, small residual amounts of hardness remain in the resin. If resin is allowed to sit in a stagnant vessel of water, some hardness will diffuse into the bulk water. Therefore, at the initiation of flow, the water effluent from a zeolite softener can contain hardness even if it has been regenerated recently. After a few minutes of flow, the hardness is rinsed from the softener, and the treated water is soft.
The duration of a service cycle depends on the rate of softener flow, the hardness level in the water, and the amount of salt used for regeneration. Table 8-1 shows the effect of regenerant level on the softening capacity of a gelular strong cation resin. Note that the capacity of the resin increases as the regenerant dosage increases, but the increase is not proportional. The regeneration is less efficient at the higher regenerant levels. Therefore, softener operating costs increase as the regenerant level increases. As shown by the data in Table 8-1, a 150% increase in regenerant salt provides only a 67% increase in operating capacity.
Table 8-1. Effect of regenerant salt level on strong acid cation resin softening capacity.
Table 8-1. Effect of regenerant salt level on strong acid cation resin softening capacity. | |
Salt (lb/ft3) | Capacity (gr/ft3) |
6 | 18,000 |
8 | 20,000 |
10 | 24,000 |
15 | 30,000 |
Equipment
The equipment used for sodium zeolite softening consists of a softener exchange vessel, control valves and piping, and a system for brining, or regenerating, the resin. Usually, the softener tank is a vertical steel pressure vessel with dished heads as shown in Figure 8-6. Major features of the softening vessel include an inlet distribution system, free-board space, a regenerant distribution system, ion exchange resin, and a resin-retaining underdrain collection system.
The inlet distribution system is usually located at the top of the tank. The inlet system provides even distribution of influent water. This prevents the water from hollowing out flow channels in the resin bed, which would reduce system capacity and effluent quality. The inlet system also acts as a collector for backwash water.
The inlet distributor consists of a central header/hub with distributing laterals/radials or simple baffle plates, which direct the flow of water evenly over the resin bed. If water is not prevented from flowing directly onto the bed or tank walls, channeling will result.
The volume between the inlet distributor and the top of the resin bed is called the free-board space. The free-board allows for the expansion of the resin during the backwash portion of the regeneration without loss of resin. It should be a minimum of 50% of the resin volume (80% preferred).
The regenerant distributor is usually a header-lateral system that evenly distributes the regenerant brine during regeneration. The location of the distributor, 6 in. above the top of the resin bed, prevents the dilution of regenerant by water in the free-board space. It also reduces water and time requirements for displacement and fast rinse. The regenerant distributor should be secured to the tank structure to prevent breakage and subsequent channeling of the regenerant.
Water is softened by the bed of strong acid cation exchange resin in the sodium form. The quantity of resin required depends on the water flow, total hardness, and time desired between regeneration cycles. A minimum bed depth of 24 in. is recommended for all systems.
The underdrain system, located at the bottom of the vessel, retains ion exchange resin in the tank, evenly collects the service flow, and evenly distributes the backwash flow. Uneven collection of water in service or uneven distribution of the backwash water can result in channeling, resin fouling, or resin loss.
Although several underdrain designs are used, there are two primary types–subfill and resin-retaining. A subfill system consists of multiple layers of support media (such as graded gravel or anthracite) which support the resin, and a collection system incorporating drilled pipes or subfill strainers. As long as the support layers remain intact, the resin will remain in place. If the supporting media becomes disturbed, usually due to improper backwash, the resin can move through the disrupted layers and exit the vessel. A resin-retaining collector, such as a screened lateral or profile wire strainer, is more expensive than a subfill system but protects against resin loss.
The main valve and piping system directs the flow of water and regenerant to the proper locations. The valve system consists of a valve nest or a single multiport valve. A valve nest includes six main valves: service inlet and outlet, backwash inlet and outlet, regenerant inlet, and regenerant/rinse drain. The valves may be operated manually, or automatically controlled by air, electrical impulse, or water pressure. In some systems, a single multiport valve is used in place of the valve nest. As the valve rotates through a series of fixed positions, ports in the valve direct flow in the same manner as a valve nest. Multiport valves can eliminate operational errors caused by opening of the incorrect valve but must be properly maintained to avoid leaks through the port seals.
The brining system consists of salt dissolving/brine measuring equipment, and dilution control equipment to provide the desired regenerant strength. The dissolving/measuring equipment is designed to provide the correct amount of concentrated brine (approximately 26% NaCl) for each regeneration, without allowing any undissolved salt into the resin. Most systems use a float-operated valve to control the fill and draw-down of the supply tank, thereby controlling the amount of salt used in the regeneration. Usually, the concentrated brine is removed from the tank by means of an eductor system, which also dilutes the brine to the optimum regenerant strength (8-10% NaCl). The brine can also be pumped from the concentrated salt tank and mixed with dilution water to provide the desired regenerant strength.
Softener Operation
A sodium zeolite softener operates through two basic cycles: the service cycle, which produces soft water for use, and the regeneration cycle, which restores resin capacity at exhaustion.
In the service cycle, water enters the softener through the inlet distribution system and flows through the bed. The hardness ions diffuse into the resin and exchange with sodium ions, which return to the bulk water. Soft water is collected in the underdrain system and discharged. Service water flow to the softener should be as constant as possible to prevent sudden surges and frequent on-off operation.
Due to resin requirements and vessel designs, the softening operation is most efficient when a service flow rate between 6 and 12 gpm per square foot of resin surface area is maintained. Most equipment is designed to operate in this range, but some special designs utilize a deep resin bed to permit operation at 15-20 gpm/ft². Continuous operation above the manufacturer's suggested limits can lead to bed compaction, channeling, premature hardness breakthrough, and hardness leakage. Operating well below the manufacturer's recommended flow rates can also negatively affect softener performance. At low flow rates, the water is not sufficiently distributed, and the optimum resin-water contact cannot take place.
When a softener is exhausted, the resin must be regenerated. Monitoring of the effluent hardness reveals resin exhaustion. When hardness increases, the unit is exhausted. Automatic monitors pro-vide a more constant indication of the condition of the softener than periodic operator sampling and testing, but require frequent maintenance to ensure accuracy. Many facilities regenerate softeners before exhaustion, based on a predetermined time period or number of gallons processed.
Most softening systems consist of more than one softener. They are often operated so that one softener is in regeneration or standby while the other units are in service. This ensures an uninterrupted flow of soft water. Prior to placing a standby softener into service, the unit should be rinsed to remove any hardness that has entered the water during the standing time.
Softener Regeneration
The regeneration cycle of a sodium zeolite softener consists of four steps: backwash, regeneration (brining), displacement (slow rinse), and fast rinse.
Backwash. During the service cycle, the downward flow of water causes suspended material to accumulate on the resin bed. Resin is an excellent filter and can trap particulate matter that has passed through upstream filtration equipment. The backwash step removes accumulated material and reclassifies the resin bed. In the backwash step, water flows from the underdrain distributor up through the resin bed and out the service distributor to waste. The upward flow lifts and expands the resin, allowing for removal of particulate material and resin fines and the classification of the resin. Resin classification brings the smaller beads to the top of the unit while the larger beads settle to the bottom. This enhances the distribution of the regenerant chemical and service water.
Backwashing should continue for a minimum of 10 min or until effluent from the backwash outlet is clear. The backwash flow should be sufficient to expand the resin bed volume by 50% or more, depending on the available free-board. Insufficient backwash can lead to bed fouling and channeling. Excessive backwash flow rates result in the loss of resin. Backwash flow rates usually vary between 4-8 (ambient temperature) and 12-15 (hot service) gpm per square foot of bed area, but each manufacturer's recommendation should be followed. The ability of water to expand the resin is greatly affected by temperature. Less flow is required to expand the bed with cold water than with warm water. Resin bed expansion should be checked regularly and the flow rate adjusted as needed to maintain proper bed expansion.
Usually, the backwash water is filtered raw water. Water leaving the backwash outlet is unchanged in chemistry but can contain suspended solids. In order to conserve water, the backwash effluent can be returned to the clarifier or filter influent for treatment.
Regeneration (Brining). After backwash, regenerant brine is applied. The brine stream enters the unit through the regenerant distributor and flows down through the resin bed at a slow rate (usually between 0.5 and 1 gpm per square foot of resin). Brine flow is collected through the underdrain and sent to waste. The slow flow rate increases contact between the brine and resin. To achieve optimum efficiency from the brine, the solution strength should be 10% during brine introduction.
Displacement (Slow Rinse). Following the introduction of regenerant brine, a slow flow of water continues through the regenerant distribution system. This water flow displaces the regenerant through the bed at the desired flow rate. The displacement step completes the regeneration of the resin by ensuring proper contact of the regenerant with the bottom of the resin bed. The flow rate for the displacement water is usually the same rate used for the dilution of the concentrated brine. The duration of the displacement step should be sufficient to allow for approximately one resin bed volume of water to pass through the unit. This provides a "plug" of displacement water which gradually moves the brine completely through the bed.
Fast Rinse. After completion of the displacement rinse, water is introduced through the inlet distributor at a high flow rate. This rinse water removes the remaining brine as well as any residual hardness from the resin bed. The fast rinse flow rate is normally between 1.5 and 2 gpm per square foot of resin. Sometimes it is deter-mined by the service rate for the softener.
Initially, the rinse effluent contains large amounts of hardness and sodium chloride. Usually, hardness is rinsed from the softener before excess sodium chloride. In many operations, the softener can be returned to service as soon as the hardness reaches a predetermined level, but some uses require rinsing until the effluent chlorides or conductivity are near influent levels. An effective fast rinse is important to ensure high effluent quality during the service run. If the softener has been in standby following a regeneration, a second fast rinse, known as a service rinse, can be used to remove any hardness that has entered the water during standby.
HOT ZEOLITE SOFTENING
Zeolite softeners can be used to remove residual hardness in the effluent from a hot process lime or lime-soda softener. The hot process effluent flows through filters and then through a bed of strong acid cation resin in the sodium form (Figure 8-7). The equipment and operation of a hot zeolite softener is identical to that of an ambient temperature softener, except that the valves, piping, controllers, and instrumentation must be suitable for the high temperature (220-250°F). Standard strong cation resin can be used at temperatures of up to 270°F, but for a longer service life a premium gel or macroreticular resin is recommended. When operating a zeolite system following a hot process softener, it is important to design the system to eliminate flow surges in the hot lime unit. Common designs include the use of backwash water storage tanks in the hot lime unit and extended slow rinses for the zeolite in lieu of a standard fast rinse.
Applications and Advantages
Scale and deposit buildup in boilers and the formation of insoluble soap curds in washing operations have created a large demand for softened water. Because sodium zeolite softeners are able to satisfy this demand economically, they are widely used in the preparation of water for low and medium pressure boilers, laundries, and chemical processes. Sodium zeolite softening also offers the following advantages over other softening methods:
- treated water has a very low scaling tendency because zeolite softening reduces the hardness level of most water supplies to less than 2 ppm
- operation is simple and reliable; automatic and semiautomatic regeneration controls are available at a reasonable cost
- salt is inexpensive and easy to handle
- no waste sludge is produced; usually, waste disposal is not a problem
- within certain limits, variations in water flow rate have little effect on treated water quality
- because efficient operation can be obtained in units of almost any size, sodium zeolite softeners are suitable for both large and small installations
Although sodium zeolite softeners efficiently re-duce the amount of dissolved hardness in a water supply, the total solids content, alkalinity, and silica in the water remain unaffected. A sodium zeolite softener is not a direct replacement for a hot lime-soda softener. Plants that have replaced their hot process softeners with only zeolite softeners have experienced problems with silica and alkalinity levels in their boilers.
Because the resin is such an efficient filter, sodium zeolite softeners do not function efficiently on turbid waters. Continued operation with an influent turbidity in excess of 1.0 JTU causes bed fouling, short service runs, and poor effluent quality. Most city and well waters are suitable, but many surface supplies must be clarified and filtered before use.
The resin can be fouled by heavy metal contaminants, such as iron and aluminum, which are not removed during the course of a normal regeneration. If excess iron or manganese is present in the water supply, the resin must be cleaned periodically. Whenever aluminum coagulants are used ahead of zeolite softeners, proper equipment operation and close control of clarifier pH are essential to good softener performance.
Strong oxidizing agents in the raw water attack and degrade the resin. Chlorine, present in most municipal supplies, is a strong oxidant and should be removed prior to zeolite softening by activated carbon filtration or reaction with sodium sulfite.
ion exchange manufacturer supplier and providers in india.
ReplyDelete
ReplyDeleteDo you need Digital Pyrometer, best-infrared thermometer, high-temperature pyrometer or optical pyrometer well we "Maxwell" is leading Digital Pyrometer Manufacturer in India and providing various Pyrometer services at the reasonable price so just contact us at +91 9810346000 moreover you can visit us https://www.maxwelltips.com
Maxwell one of the best Thermocouple Tips Manufacturer in Delhi.We are offering various types of thermocouples. These Thermocouples can be used to improve the accuracy in the measurements and widely used in all science applications that include for temperature measurements. There are different types of thermocouple tips in the industry and all of them are made by the Maxwell.Contact Us +91 9810346000.
ReplyDelete