Friday, 19 October 2012

Evidence of pollution during the early Industrial Revolution is widespread.





HISTORY

Much of what we know of ancient civilizations comes from the wastes they left behind. Refuse such as animal skeletons and implements from stone age cave dwellings in Europe, China, and the Middle East helps reveal hunting techniques, diet, clothing, tool usage, and the use of fire for cooking. Prehistoric refuse heaps, or middens, discovered by archaeologists in coastal areas of North America reveal information about the shellfish diet and eating habits of Native Americans who lived more than 10,000 years ago.
As humans developed new technologies, the magnitude and severity of pollution increased. Many historians speculate that the extensive use of lead plumbing for drinking water in Rome caused chronic lead poisoning in those who could afford such plumbing. The mining and smelting of ores that accompanied the transition from the Stone Age to the Metal Age resulted in piles of mining wastes that spread potentially toxic elements such as mercury, copper, lead, and nickel throughout the environment.
Evidence of pollution during the early Industrial Revolution is widespread. Samples of hair from historical figures such as Newton and Napoleon show the presence of toxic elements such as antimony and mercury. By the 1800s, certain trades were associated with characteristic occupational diseases: Chimney sweeps contracted cancer of the scrotum (the external sac of skin enclosing the testes, or reproductive glands) from hydrocarbons in chimney soot; hatters became disoriented, or “mad,” from nerve-destroying mercury salts used to treat felt fabric; and bootblacks suffered liver damage from boot polish solvents.
During the 20th century, pollution evolved from a mainly localized problem to one of global consequences in which pollutants not only persisted in the environment, but changed atmospheric and climatic conditions. The Minamata Bay disaster was the first major indication that humans would need to pay more attention to their waste products and waste disposal practices, in particular, hazardous waste disposal. In the years that followed, many more instances of neglect or carelessness resulted in dangerous levels of contamination. In 1976 an explosion at a chemical factory in Seveso, Italy, released clouds of toxic dioxin into the area, exposing hundreds of residents and killing thousands of animals that ate exposed food. In 1978 it was discovered that the Love Canal housing development in New York State was built on a former chemical waste dump. The development was declared uninhabitable. The world’s worst industrial accident occurred in Bhopal, India, in 1984. A deadly gas leaked from an American chemical plant, killing more than 3,800 people and injuring more than 200,000.
The 1986 Chernobyl’ nuclear reactor accident demonstrated the dangerous contamination effects of large, uncontained disasters. In an unprecedented action, pollution was used as a military tactic in 1991 during the conflict in the Persian Gulf. The Iraqi military intentionally released as much as 1 billion liters (336 million gallons) of crude oil into the Persian Gulf and set fire to more than 700 oil wells, sending thick, black smoke into the atmosphere over the Middle East.

CONTROLLING POLLUTION
Because of the many environmental tragedies of the mid-20th century, many nations instituted comprehensive regulations designed to repair the past damage of uncontrolled pollution and prevent future environmental contamination. In the United States, the Clean Air Act (1970) and its amendments significantly reduced certain types of air pollution, such as sulfur dioxide emissions. The Clean Water Act (1977) and Safe Drinking Water Act (1974) regulated pollution discharges and set water quality standards. The Toxic Substances Control Act (1976) and the Resource Conservation and Recovery Act (1976) provided for the testing and control of toxic and hazardous wastes. In 1980 Congress passed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as Superfund, to provide funds to clean up the most severely contaminated hazardous waste sites. These and several other federal and state laws helped limit uncontrolled pollution, but progress has been slow and many severe contamination problems remain due to lack of funds for cleanup and enforcement.
International agreements have also played a role in reducing global pollution. The Montréal Protocol on Substances that Deplete the Ozone Layer (1987) set international target dates for reducing the manufacture and emissions of the chemicals, such as CFCs, known to deplete the ozone layer. The Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal (1989) serves as a framework for the international regulation of hazardous waste transport and disposal.
Since 1992 representatives from more than 160 nations have met regularly to discuss methods to reduce greenhouse gas emissions. In 1997 the Kyōto Protocol was devised, calling for industrialized countries to reduce their gas emissions by 2012 to an average 5 percent below 1990 levels. At the end of 2000 the Kyōto Protocol had not yet been ratified; negotiators were still working to find consensus on the rules, methods, and penalties that should be used to enforce the treaty.
Regulations and legislation have led to considerable progress in cleaning up air and water pollution in developed countries. Vehicles in the 1990s emit fewer nitrogen oxides than those in the 1970s did; power plants now burn low-sulfur fuels; industrial stacks have scrubbers to reduce emissions; and lead has been removed from gasoline. Developing countries, however, continue to struggle with pollution control because they lack clean technologies and desperately need to improve economic strength, often at the cost of environmental quality. The problem is compounded by developing countries attracting foreign investment and industry by offering cheaper labor, cheaper raw materials, and fewer environmental restrictions. The maquiladoras, assembly plants along the Mexican side of the Mexico-U.S. border, provide jobs and industry for Mexico but are generally owned by non-Mexican corporations attracted to the cheap labor and lack of pollution regulation. As a result, this border region, including the Río Grande, is one of the most heavily polluted zones in North America. To avoid ecological disaster and increased poverty, developing countries will require aid and technology from outside nations and corporations, community participation in development initiatives, and strong environmental regulations.
Nongovernmental citizen groups have formed at the local, national, and international level to combat pollution problems worldwide. Many of these organizations provide information and support for people or organizations traditionally not involved in the decision-making process. The Pesticide Action Network provides technical information about the effects of pesticides on farmworkers. The Citizen’s Clearinghouse for Hazardous Waste, established by veterans of the Love Canal controversy, provides support for communities targeted for hazardous waste installations. A well-organized, grassroots, environmental justice movement has arisen to advocate equitable environmental protections. Greenpeace is an activist organization that focuses international attention on industries and governments known to contaminate land, sea, or atmosphere with toxic or solid wastes. Friends of the Earth International is a federation of international organizations that fight environmental pollution around the world.
Environment
I

INTRODUCTION
Environment, all of the external factors affecting an organism. These factors may be other living organisms (biotic factors) or nonliving variables (abiotic factors), such as temperature, rainfall, day length, wind, and ocean currents. The interactions of organisms with biotic and abiotic factors form an ecosystem. Even minute changes in any one factor in an ecosystem can influence whether or not a particular plant or animal species will be successful in its environment.
Organisms and their environment constantly interact, and both are changed by this interaction. Like all other living creatures, humans have clearly changed their environment, but they have done so generally on a grander scale than have all other species. Some of these human-induced changes—such as the destruction of the world’s tropical rain forests to create farms or grazing land for cattle—have led to altered climate patterns (see Global Warming). In turn, altered climate patterns have changed the way animals and plants are distributed in different ecosystems.
Scientists study the long-term consequences of human actions on the environment, while environmentalists—professionals in various fields, as well as concerned citizens—advocate ways to lessen the impact of human activity on the natural world.
II

UNDERSTANDING THE ENVIRONMENT
The science of ecology attempts to explain why plants and animals live where they do and why their populations are the sizes they are. Understanding the distribution and population size of organisms helps scientists evaluate the health of the environment.
In 1840 German chemist Justus von Liebig first proposed that populations cannot grow indefinitely, a basic principle now known as the Law of the Minimum. Biotic and abiotic factors, singly or in combination, ultimately limit the size that any population may attain. This size limit, known as a population’s carrying capacity, occurs when needed resources, such as food, breeding sites, and water, are in short supply. For example, the amount of nutrients in soil influences the amount of wheat that grows on a farm. If just one soil nutrient, such as nitrogen, is missing or below optimal levels, fewer healthy wheat plants will grow.
Population size and distribution may also be affected, either directly or indirectly, by the way species in an ecosystem interact with one another. In an experiment performed in the late 1960s in the rocky tidal zone along the Pacific Coast of the United States, American ecologist Robert Paine studied an area that contained 15 species of invertebrates, including starfish, mussels, limpets, barnacles, and chitons. Paine found that in this ecosystem one species of starfish preyed heavily on a species of mussel, preventing that mussel population from multiplying and monopolizing space in the tidal zone. When Paine removed the starfish from the area, he found that the mussel population quickly increased in size, crowding out most other organisms from rock surfaces. The number of invertebrate species in the ecosystem soon dropped to eight species. Paine concluded that the loss of just one species, the starfish, indirectly led to the loss of an additional six species and a transformation of the ecosystem.
Typically, the species that coexist in ecosystems have evolved together for many generations. These populations have established balanced interactions with each other that enable all populations in the area to remain relatively stable. Occasionally, however, natural or human-made disruptions occur that have unforeseen consequences to populations in an ecosystem. For example, 17th-century sailors routinely introduced goats to isolated oceanic islands, intending for the goats to roam freely and serve as a source of meat when the sailors returned to the islands during future voyages. As nonnative species free from all natural predators, the goats thrived and, in the process, overgrazed many of the islands. With a change in plant composition, many of the native animal species on the islands were driven to extinction. A simple action, the introduction of goats to an island, yielded many changes in the island ecosystem, demonstrating that all members of a community are closely interconnected.
To better understand the impact of natural and human disruptions on the Earth, in 1991 the National Aeronautics and Space Administration (NASA) began to use artificial satellites to study global change. NASA’s undertaking, called Earth Science Enterprise, is part of an international effort linking numerous satellites into a single Earth Observing System (EOS). EOS collects information about the interactions occurring in the atmosphere, on land, and in the oceans, and these data help scientists and lawmakers make sound environmental policy decisions.

No comments:

Post a Comment