Design Safety
In the design and engineering stage (conceptual, basic, and detail), the plants must be configured with intrinsic safety to reduce the risk both inside and out to a minimum. It is imperative in this stage to conduct an exhaustive risk analysis and apply proper techniques to manage all possible hazardous situations.
Various different tools (HAZID, HAZOP, SIL Analysis, LOPA, FMECA, QRA, BRA, FERA, FIRE&GAS, ALARP, BOW-TIE, ATEX, Human Factors Engineering, Human Factor Risk Analysis (Human HAZOP, SCTA), etc.) can be used depending on the particular engineering phase, the project being carried out, the end objective and the risk management policy which the project developer and engineering have defined as being appropriate for attaining these objectives. The application makes it possible throughout the life cycle of industrial facilities to obtain significant benefits in safety, such as:
Identifying hazardous situations originating internally or externally that can lead to a scenario of accidents, which involve hydrogen or other present substances, or in any of the operations in the plant construction and operations phase, including those caused by the Human Factor.
Assessing the damage caused by potential accidents, quantifying the effects and consequences on vulnerable elements (people, environment and assets)
Determining the probabilities of occurrence of the events indicating a hazardous situation and their different potential evolutions.
Quantifying and assessing the risks.
Identifying the preventive and mitigating safety barriers to roll out to control the risks at acceptable levels.
To name just a few practical examples of application of some of these tools for the design phase or best practices recommended by the insurance companies, and considering the properties of hydrogen mentioned above, we have the following analyses:
SIL analysis, which enables the design and implementation of the life cycle of the Safety-Related Systems (interlocks) in accordance with the best practices regulations on Functional Safety, for proper design, operation, and maintenance of these systems with safety and reliability criteria.
Fire&Gas, aimed at proper design and location of the fire and hydrogen detectors as a safety barrier to identify potential hazardous events at early stages, activate the necessary response mechanisms, and mitigate possible consequences. These Fire&Gas studies make it possible to ensure the different types of sensors are placed optimally, where the design of processing measurement signals and their transmission is very important, to activate protocols quickly and effectively.
FERA (Fire and Explosion Risk Assessment) is the most appropriate and optimal way of implementing and placing process equipment, particularly the critical equipment, based on the consequences and risks analyzed, determining their construction needs to support those adverse effects.
BRA (Building Risk Assessment), to define the best location of the buildings and control rooms, as well as the parameters for their structural design to guarantee their integrity in the event they are affected by values of excess pressure and/or thermal radiation that require a special level of production of the people and facility control systems they house.
ATEX Studies Classification of Hazardous Areas, Explosion Risk Assessments and Explosion Protection Document, in compliance with the obligation so of RD 681/03. Conducting studies of this type must consider the specific conditions of each facility, assessing in detail each possible source of ignition—one by one—in each classified area. As best practices, the implementation of NFC tags is starting to spread, including relevant information on the equipment, as well as in the area of ATEX, which facilitates the management of risks of explosion caused by electrical and mechanical equipment. Lastly, the assessment must take into account, again, the potential role of the human factor as the origin of sources of ignition.
Human Factors Engineering, to verify that the design of the new facilities: a) complies with prevention standards; b) meets ergonomic criteria; c) guarantees accessibility to critical elements in emergency situations; d) minimizes risks of accident potentially caused by the human factor; d) maximizes the operability of the facilities. Undertaking this type of analysis in the design phase (conceptual, basic and/or detail) eliminates the cost of implementing corrective measures once the facilities have been built and delivered. HFE can be conducted by including HFE specialists on the design teams, or by reviewing 3D models remotely for the projects as they are generated in the different phases of development of the Project engineering, or though HFE sessions, similar to the HAZOP sessions.
No comments:
Post a Comment