Dynamic, Absolute and Kinematic Viscosity
Dynamic, absolute and kinematic viscosity - and how to convert between CentiStokes (cSt), CentiPoises (cP), Saybolt Universal Seconds (SSU) and degree Engler
Sponsored Links
- viscosity is the measure of a fluid's resistance to flow
- molasses is highly viscous
- water is medium viscous
- gas is low viscous
- dynamic (or absolute)
- kinematic
Dynamic (absolute) Viscosity
Absolute viscosity - coefficient of absolute viscosity - is a measure of internal resistance. Dynamic (absolute) viscosity is the tangential force per unit area required to move one horizontal plane with respect to an other plane - at an unit velocity - when maintaining an unit distance apart in the fluid.The shearing stress between the layers of a non turbulent fluid moving in straight parallel lines can be defined for a Newtonian fluid as
τ = μ dc / dy (1)Equation (1) is known as the Newtons Law of Friction.
where
τ = shearing stress (N/m2)
μ = dynamic viscosity (N s/m2)
dc = unit velocity (m/s)
dy = unit distance between layers (m)
In the SI system the dynamic viscosity units are N s/m2, Pa s or kg/(m s) - where
- 1 Pa s = 1 N s/m2 = 1 kg/(m s)
- 1 poise = 1 dyne s/cm2 = 1 g/(cm s) = 1/10 Pa s = 1/10 N s/m2
- 1 p = 100 cP
- 1 cP = 0.01 poise = 0.01 gram per cm second = 0.001 Pascal second = 1 milliPascal second = 0.001 N s/m2
Liquid | Absolute Viscosity *) (Pa s) |
---|---|
Air | 1.983 x 10-5 |
Water | 1 x 10-3 |
Olive Oil | 1 x 10-1 |
Glycerol | 1 x 100 |
Liquid Honey | 1 x 101 |
Golden Syrup | 1 x 102 |
Glass | 1 x 1040 |
*) at room temperature
Kinematic Viscosity
Kinematic viscosity is the ratio of - absolute (or dynamic) viscosity to density - a quantity in which no force is involved. Kinematic viscosity can be obtained by dividing the absolute viscosity of a fluid with the fluid mass density.ν = μ / ρ (2)In the SI-system the theoretical unit of kinematic viscosity is m2/s - or Stoke (St) where
where
ν = kinematic viscosity (m2/s)
μ = absolute or dynamic viscosity (N s/m2)
ρ = density (kg/m3)
- 1 St (Stokes) = 10-4 m2/s = 1 cm2/s
- 1 St = 100 cSt
- 1 cSt (centiStoke) = 10-6 m2/s = 1 mm2/s
ν = 6.7197 10-4 μ / γ (2a)
where
ν = kinematic viscosity (ft2/s)
μ = absolute or dynamic viscosity (cP)
γ = specific weight (lb/ft3)
Viscosity and Reference Temperature
The viscosity of a fluid is highly temperature dependent - and for dynamic or kinematic viscosity to be meaningful the reference temperature must be quoted. In ISO 8217 the reference temperature for a residual fluid is 100oC. For a distillate fluid the reference temperature is 40oC.- for a liquid - the kinematic viscosity decreases with higher temperature
- for a gas - the kinematic viscosity increases with higher temperature
Other Viscosity Units
Saybolt Universal Seconds (or SUS, SSU)
Saybolt Universal Seconds (or SUS) is an alternative unit for measuring viscosity. The efflux time is Saybolt Universal Seconds (SUS) required for 60 milliliters of a petroleum product to flow through the calibrated orifice of a Saybolt Universal viscometer - under a carefully controlled temperature and as prescribed by test method ASTM D 88. This method has largely been replaced by the kinematic viscosity method. Saybolt Universal Seconds is also called the SSU number (Seconds Saybolt Universal) or SSF number (Saybolt Seconds Furol).Kinematic viscosity in SSU versus dynamic or absolute viscosity can be expressed as
νSSU = B μ / SG
= B νcentiStokes (3)
where
νSSU = kinematic viscosity (SSU)
B = 4.632 for temperature 100 oF (37.8 oC)
B = 4.664 for temperature 210oF (98.9 oC)
μ = dynamic or absolute viscosity (cP)
SG = Specific Gravity
νcentiStokes = kinematic viscosity (centiStokes)
Degree Engler
Degree Engler is used in Great Britain as a scale to measure kinematic viscosity. Unlike the Saybolt and Redwood scales, the Engler scale is based on comparing the flow of the substance being tested to the flow of another substance - water. Viscosity in Engler degrees is the ratio of the time of a flow of 200 cubic centimeters of the fluid whose viscosity is being measured - to the time of flow of 200 cubic centimeters of water at the same temperature (usually 20oC but sometimes 50oC or 100oC) in a standardized Engler viscosity meter.Newtonian Fluids
A fluid where the shearing stress is linearly related to the rate of shearing strain - is designated as a Newtonian Fluid.A Newtonian material is referred to as true liquid since the viscosity or consistency is not affected by shear such as agitation or pumping at a constant temperature. Most common fluids - both liquids and gases - are Newtonian fluids. Water and oils are examples of Newtonian liquids.
Shear-thinning or Pseudo-plastic Fluids
A Shear-thinning or pseudo-plastic fluid is a fluid where viscosity decreases with increasing shear rate. The structure is time-independent.Thixotropic Fluids
A Thixotropic fluid has a time-dependent structure. The viscosity of a thixotropic fluid decreases with increasing time - at a constant shear rate.Ketchup and mayonnaise are examples of thixotropic materials. They appear thick or viscous but are possible to pump quite easily.
Dilatant Fluids
A Shear Thickening Fluid - or Dilatant Fluid - increases the viscosity with agitation or shear strain. Dilatant fluids are known as non-Newton fluids.Some dilatant fluids can become almost solid in a pump or pipe line. With agitation cream becomes butter and candy compounds. Clay slurry and similar heavily filled liquids do the same thing.
Bingham Plastic Fluids
A Bingham Plastic Fluid has a yield value which must be exceeded before it will start to flow like a fluid. From that point the viscosity decreases with increasing agitation. Toothpaste, mayonnaise and tomato ketchup are examples of such products.Example - Air, Converting between Kinematic and Absolute Viscosity
Kinematic viscosity of air at 1 bar (1 105 Pa, N/m2) and 40oC is 16.97 cSt (16.97 10-6 m2/s).The density of the air can be estimated with the Ideal Gas Law
ρ = p / (R T)The absolute viscosity can be calculated as
= 1 105 (N/m2) / ( 287 (J/(kg K)) (273 (oC) + 33 ( oC)) )
= 1.113 (kg/m3)
where
ρ = density (kg/m3)
p = absolute pressure (Pa, N/m2)
R = individual gas constant (J/(kg K))
T = absolute temperature (K)
μ = 1.113 (kg/m3) 16.97 10-6 (m2/s)
= 1.88 10-5 (kg/(m s), N s/m2)
Viscosity of some Common Liquids
centiStokes (cSt) | Saybolt Second Universal (SSU, SUS) | Typical liquid |
---|---|---|
1 | 31 | Water (20oC) |
4.3 | 40 | Milk SAE 20 Crankcase Oil SAE 75 Gear Oil |
15.7 | 80 | No. 4 fuel oil |
20.6 | 100 | Cream |
43.2 | 200 | Vegetable oil |
110 | 500 | SAE 30 Crankcase Oil SAE 85 Gear Oil |
220 | 1000 | Tomato Juice SAE 50 Crankcase Oil SAE 90 Gear Oil |
440 | 2000 | SAE 140 Gear Oil |
1100 | 5000 | Glycerine (20oC) SAE 250 Gear Oil |
2200 | 10,000 | Honey |
6250 | 28,000 | Mayonnaise |
19,000 | 86,000 | Sour cream |
νCentistokes = 0.226 νSSU - 195 / νSSU
where
νSSU < 100
νCentistokes = 0.220 νSSU - 135 / νSSU
where
νSSU > 100
Viscosity and Temperature
Kinematic viscosity of fluids like water, mercury, oils SAE 10 and oil no. 3 - and gases like air, hydrogen and helium are indicated in the diagram below. Note that- for liquids viscosity decreases with temperature
- for gases viscosity increases with temperature
No comments:
Post a Comment