Sunday 24 May 2015

Soaps & Detergents: Chemistry

Soaps & Detergents: Chemistry

chemistry
To understand what is needed to achieve effective cleaning, it is helpful to have a basic knowledge of soap and detergent chemistry.
surfacetensionWater, the liquid commonly used for cleaning, has a property called surface tension. In the body of the water, each molecule is surrounded and attracted by other water molecules. However, at the surface, those molecules are surrounded by other water molecules only on the water side. A tension is created as the water molecules at the surface are pulled into the body of the water. This tension causes water to bead up on surfaces (glass, fabric), which slows wetting of the surface and inhibits the cleaning process. You can see surface tension at work by placing a drop of water onto a counter top. The drop will hold its shape and will not spread.
surfactantIn the cleaning process, surface tension must be reduced so water can spread and wet surfaces. Chemicals that are able to do this effectively are called surface active agents, or surfactants. They are said to make water "wetter."
Surfactants perform other important functions in cleaning, such as loosening, emulsifying sinkdishes(dispersing in water) and holding soil in suspension until it can be rinsed away. Surfactants can also provide alkalinity, which is useful in removing acidic soils.
04ChemSurfactants are classified by their ionic (electrical charge) properties in water: anionic (negative charge), nonionic (no charge), cationic (positive charge) and amphoteric (either positive or negative charge).
Soap is an anionic surfactant. Other anionic as well as nonionic surfactants are the main ingredients in today's detergents. Now let's look closer at the chemistry of surfactants.

Soaps

Soaps are water-soluble sodium or potassium salts of fatty acids. Soaps are made from fats and oils, or their fatty acids, by treating them chemically with a strong alkali.
First let's examine the composition of fats, oils and alkalis; then we'll review the soapmaking process.

Fats and Oils

The fats and oils used in soapmaking come from animal or plant sources. Each fat or oil is made up of a distinctive mixture of several different triglycerides.
In a triglyceride molecule, three fatty acid molecules are attached to one molecule of glycerine. There are many types of triglycerides; each type consists of its own particular combination of fatty acids.
Fatty acids are the components of fats and oils that are used in making soap. They are weak acids composed of two parts:
A carboxylic acid group consisting of one hydrogen (H) atom, two oxygen (O) atoms, and one carbon (C) atom, plus a hydrocarbon chain attached to the carboxylic acid group. Generally, it is made up of a long straight chain of carbon (C) atoms each carrying two hydrogen (H) atoms.
06Chem

Alkali

An alkali is a soluble salt of an alkali metal like sodium or potassium. Originally, the alkalis used in soapmaking were obtained from the ashes of plants, but they are now made commercially. Today, the term alkali describes a substance that chemically is a base (the opposite of an acid) and that reacts with and neutralizes an acid.
The common alkalis used in soapmaking are sodium hydroxide (NaOH), also called caustic soda; and potassium 07Chemhydroxide (KOH), also called caustic potash.

How Soaps are Made

Saponification of fats and oils is the most widely used soapmaking process. This method involves heating fats and oils and reacting them with a liquid alkali to produce soap and water (neat soap) plus glycerine.
08Chem
The other major soapmaking process is the neutralization of fatty acids with an alkali. Fats and oils are hydrolyzed (split) with a high-pressure steam to yield crude fatty acids and glycerine. The fatty acids are then purified by distillation and neutralized with an alkali to produce soap and water (neat soap).
09Chem
When the alkali is sodium hydroxide, a sodium soap is formed. Sodium soaps are "hard" soaps. When the alkali is potassium hydroxide, a potassium soap is formed. Potassium soaps are softer and are found in some liquid hand soaps and shaving creams.
The carboxylate end of the soap molecule is attracted to water. It is called the hydrophilic (water-loving) 10Chemend. The hydrocarbon chain is attracted to oil and grease and repelled by water. It is known as the hydrophobic (water-hating) end.

How Water Hardness Affects Cleaning Action

11ChemAlthough soap is a good cleaning agent, its effectiveness is reduced when used in hard water. Hardness in water is caused by the presence of mineral salts - mostly those of calcium (Ca) and magnesium (Mg), but sometimes also iron (Fe) and manganese (Mn). The mineral salts react with soap to form an insoluble precipitate known as soap film or scum.
Soap film does not rinse away easily. It tends to remain behind and produces visible deposits on clothing and makes fabrics feel stiff. It also attaches to the insides of bathtubs, sinks and washing machines.
Some soap is used up by reacting with hard water minerals to form the film. This reduces the amount of soap available for cleaning. Even when clothes are washed in soft water, some hardness minerals are introduced by the soil on clothes. Soap molecules are not very versatile and cannot be adapted to today's variety of fibers, washing temperatures and water conditions.

Surfactants in Detergents

A detergent is an effective cleaning product because it contains one or more surfactants. Because of their chemical makeup, the surfactants used in detergents can be engineered to perform well under a variety of conditions. Such surfactants are less sensitive than soap to the hardness minerals in water and most will not form a film.
Detergent surfactants were developed in response to a shortage of animal and vegetable fats and oils during World War I and World War II. In addition, a substance that was resistant to hard water was needed to make cleaning more effective. At that time, petroleum was found to be a plentiful source for the manufacture of these surfactants. Today, detergent surfactants are made from a variety of petrochemicals (derived from petroleum) and/or oleochemicals (derived from fats and oils).
Petrochemicals and Oleochemicals12Chem
Like the fatty acids used in soapmaking, both petroleum and fats and oils contain hydrocarbon chains that are repelled by water but attracted to oil and grease in soils. These hydrocarbon chain sources are used to make the water-hating end of the surfactant molecule.
Other Chemicals
Chemicals, such as sulfur trioxide, sulfuric acid and ethylene oxide, are used to produce the water-loving end of the surfactant molecule.
Alkalis
As in soapmaking, an alkali is used to make detergent surfactants. Sodium and potassium hydroxide are the most common alkalis.

How Detergent Surfactants Are Made

Anionic Surfactants13Chem
The chemical reacts with hydrocarbons derived from petroleum or fats and oils to produce new acids similar to fatty acids.
A second reaction adds an alkali to the new acids to produce one type of anionic surfactant molecule.
Nonionic Surfactants
Nonionic surfactant molecules are produced by first converting the hydrocarbon to an alcohol and then reacting the fatty alcohol with ethylene oxide.
14Chem
These nonionic surfactants can be reacted further with sulfur-containing acids to form another type of anionic surfactant.

How Soaps and Detergents Work

15Chem
These types of energy interact and should be in proper balance. Let's look at how they work together.
Let's assume we have oily, greasy soil on clothing. Water alone will not remove this soil. One important reason is that oil and grease present in soil repel the water molecules.
Now let's add soap or detergent. The surfactant's water-hating end is repelled by water but attracted to the oil in the soil. At the same time, the water-loving end is attracted to the water molecules.
These opposing forces loosen the soil and suspend it in the water. Warm or hot water helps dissolve grease and oil in soil. Washing machine agitation or hand rubbing helps pull the soil free.
16Chem

No comments:

Post a Comment