Ozone (O3) is a relatively unstable molecule made up of three
atoms of oxygen (O). Although it represents only a tiny fraction of the
atmosphere, ozone is crucial for life on Earth.
Depending on where ozone resides, it can protect or harm life on Earth. Most ozone resides in the stratosphere (a layer of the atmosphere between 10 and 40 km above us), where it acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. With a weakening of this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth in the troposphere (the atmospheric layer from the surface up to about 10 km), ozone is a harmful pollutant that causes damage to lung tissue and plants.
The amounts of "good" stratospheric and "bad" tropospheric ozone in the atmosphere depend on a balance between processes that create ozone and those that destroy it. An upset in the ozone balance can have serious consequences for life on Earth, as scientists are finding evidence that changes are occurring in ozone levels—the "bad" tropospheric ozone is increasing in the air we breathe, and the "good" stratospheric ozone is decreasing in our protective ozone layer. This article describes processes that regulate "good" ozone levels.
Depending on where ozone resides, it can protect or harm life on Earth. Most ozone resides in the stratosphere (a layer of the atmosphere between 10 and 40 km above us), where it acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. With a weakening of this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth in the troposphere (the atmospheric layer from the surface up to about 10 km), ozone is a harmful pollutant that causes damage to lung tissue and plants.
The amounts of "good" stratospheric and "bad" tropospheric ozone in the atmosphere depend on a balance between processes that create ozone and those that destroy it. An upset in the ozone balance can have serious consequences for life on Earth, as scientists are finding evidence that changes are occurring in ozone levels—the "bad" tropospheric ozone is increasing in the air we breathe, and the "good" stratospheric ozone is decreasing in our protective ozone layer. This article describes processes that regulate "good" ozone levels.
No comments:
Post a Comment