What are the health effects of iron
in water?
The total amount of iron in the
human body is approximately 4 g, of which 70% is present in red blood colouring
agents. Iron is a dietary requirement for humans, just as it is for many other
organisms. Men require approximately 7 mg iron on a daily basis, whereas women
require 11 mg. The difference is determined by menstrual cycles. When people
feed normally these amounts can be obtained rapidly. The body absorbs
approximately 25% of all iron present in food. When someone is iron deficit
feed iron intake may be increased by means of vitamin C tablets, because this
vitamin reduces tertiary iron to binary iron. Phosphates and phytates decrease
the amount of binary iron.
In food iron is present as binary iron bound to haemoglobin and myoglobin, or as tertiary iron. The body may particularly absorb the binary form of iron.
Iron is a central component of haemoglobin. It binds oxygen and transports it from lungs to other body parts. It than transports CO2 back to the lungs, where it can be breathed out. Oxygen storage also requires iron. Iron is a part of several essential enzymes, and is involved in DNA synthesis. Normal brain functions are iron dependent.
In the body iron is strongly bound to transferrin, which enables exchange of the metal between cells. The compound is a strong antibiotic, and it prevents bacteria from growing on the vital element. When one is infected by bacteria, the body produces high amounts of transferrin.
When iron exceeds the required amount, it is stored in the liver. The bone marrow contains high amounts of iron, because it produces haemoglobin.
Iron deficits lead to anaemia, causing tiredness, headaches and loss of concentration. The immune system is also affected. In young children this negatively affects mental development, leads to irritability, and causes concentration disorder. Young children, pregnant women and women in their period are often treated with iron (II) salts upon iron deficits.
When high concentrations of iron are absorbed, for example by haemochromatose patients, iron is stored in the pancreas, the liver, the spleen and the heart. This may damage these vital organs. Healthy people are generally not affected by iron overdose, which is also generally rare. It may occur when one drinks water with iron concentrations over 200 ppm.
Iron compounds may have a more serious effect upon health than the relatively harmless element itself. Water soluble binary iron compounds such as FeCl2 and FeSO4 may cause toxic effects upon concentrations exceeding 200 mg, and are lethal for adults upon doses of 10-50 g. A number of iron chelates may be toxic, and the nerve toxin iron penta carbonyl is known for its strong toxic mechanism. Iron dust may cause lung disease.
In food iron is present as binary iron bound to haemoglobin and myoglobin, or as tertiary iron. The body may particularly absorb the binary form of iron.
Iron is a central component of haemoglobin. It binds oxygen and transports it from lungs to other body parts. It than transports CO2 back to the lungs, where it can be breathed out. Oxygen storage also requires iron. Iron is a part of several essential enzymes, and is involved in DNA synthesis. Normal brain functions are iron dependent.
In the body iron is strongly bound to transferrin, which enables exchange of the metal between cells. The compound is a strong antibiotic, and it prevents bacteria from growing on the vital element. When one is infected by bacteria, the body produces high amounts of transferrin.
When iron exceeds the required amount, it is stored in the liver. The bone marrow contains high amounts of iron, because it produces haemoglobin.
Iron deficits lead to anaemia, causing tiredness, headaches and loss of concentration. The immune system is also affected. In young children this negatively affects mental development, leads to irritability, and causes concentration disorder. Young children, pregnant women and women in their period are often treated with iron (II) salts upon iron deficits.
When high concentrations of iron are absorbed, for example by haemochromatose patients, iron is stored in the pancreas, the liver, the spleen and the heart. This may damage these vital organs. Healthy people are generally not affected by iron overdose, which is also generally rare. It may occur when one drinks water with iron concentrations over 200 ppm.
Iron compounds may have a more serious effect upon health than the relatively harmless element itself. Water soluble binary iron compounds such as FeCl2 and FeSO4 may cause toxic effects upon concentrations exceeding 200 mg, and are lethal for adults upon doses of 10-50 g. A number of iron chelates may be toxic, and the nerve toxin iron penta carbonyl is known for its strong toxic mechanism. Iron dust may cause lung disease.
No comments:
Post a Comment