Wednesday 23 May 2012

AMMONIA


GENERAL INFORMATION
Ammonia is a compound of nitrogen and hydrogen with the formula NH3. It is a colorless gas with a characteristic pungent odor. Ammonia contributes significantly to the nutritional needs of terrestrial organisms by serving as a precursor to food and fertilizers. Ammonia, either directly or indirectly, is also a building block for the synthesis of many pharmaceuticals. Although in wide use, ammonia is both caustic and hazardous. In 2006, worldwide production was estimated at 146.5 million tons. It is used in commercial cleaning products.
Ammonia, as used commercially, is often called anhydrous ammonia. This term emphasizes the absence of water in the material. Because NH3 boils at -33.34 °C, (-28.012 °F) the liquid must be stored under high pressure or at low temperature. Its heat of vaporization is, however, sufficiently high so that NH3 can be readily handled in ordinary beakers, in a fume hood (i.e., if it is already a liquid it will not boil readily). "Household ammonia" or "ammonium hydroxide" is a solution of NH3 in water. The strength of such solutions is measured in units of baume (density), with 26 degrees baume (about 30 weight percent ammonia at 15.5 °C) being the typical high concentration commercial product. Household ammonia ranges in concentration from 5 to 10 weight percent ammonia.

HISTORY
The Romans called the ammonium chloride deposits they collected from near the Temple of Jupiter Amun (Greek Ἄμμων Ammon) in ancient Libya 'sal ammoniacus' (salt of Amun) because of proximity to the nearby temple. Salts of ammonia have been known from very early times; thus the term Hammoniacus sal appears in the writings of Pliny, although it is not known whether the term is identical with the more modern sal-ammoniac.
In the form of sal-ammoniac (nushadir), ammonia was important to the Muslim alchemists as early as the 8th century, first mentioned by the Islamic chemist Jābir ibn Hayyān, and to the European alchemists since the 13th century, being mentioned by Albertus Magnus. It was also used by dyers in the Middle Ages in the form of fermented urine to alter the colour of vegetable dyes. In the 15th century, Basilius Valentinus showed that ammonia could be obtained by the action of alkalis on sal-ammoniac. At a later period, when sal-ammoniac was obtained by distilling the hooves and horns of oxen and neutralizing the resulting carbonate with hydrochloric acid, the name "spirit of hartshorn" was applied to ammonia.
Gaseous ammonia was first isolated by Joseph Priestley in 1774 and was termed by him alkaline air. Eleven years later in 1785, Claude Louis Berthollet ascertained its composition.
The Haber-Bosch process to produce ammonia from the nitrogen in the air was developed by Fritz Haber and Carl Bosch in 1909 and patented in 1910. It was first used on an industrial scale by the Germans during World War I, following the allied blockade that cut off the supply of nitrates from Chile. The ammonia was used to produce explosives to sustain their war effort.
Prior to the advent of cheap natural gas, hydrogen as a precursor to ammonia production was produced via the electrolysis of water or using the chlor-alkali process. The Vemork 60 MW hydroelectric plant in Norway, constructed in 1911, was used purely for plants using the Birkeland-Eyde process.

• Fertilizer
Approximately 83% (as of 2004) of ammonia is used as fertilizers either as its salts or as solutions. Consuming more than 1% of all man-made power, the production of ammonia is a significant component of the world energy budget.
• Precursor to nitrogenous compounds
Ammonia is directly or indirectly the precursor to most nitrogen-containing compounds. Virtually all synthetic nitrogen compounds are derived from ammonia. An important derivative is nitric acid. This key material is generated via the Ostwald process by oxidation of ammonia with air over a platinum catalyst at 700–850 °C, ~9 atm. Nitric oxide is an intermediate in this conversion:
NH3 + 2 O2 → HNO3 + H2O
Nitric acid is used for the production of fertilizers, explosives, and many organonitrogen compounds.
• Cleaner
Household ammonia is a solution of NH3 in water (i.e., ammonium hydroxide) used as a general purpose cleaner for many surfaces. Because ammonia results in a relatively streak-free shine, one of its most common uses is to clean glass, porcelain and stainless steel. It is also frequently used for cleaning ovens and soaking items to loosen baked-on grime. Household ammonia ranges in concentration from 5 to 10 weight percent ammonia.


MINOR AND EMERGING USES
• Refrigeration – R717
Because of its favorable vaporization properties, ammonia is an attractive refrigerant. It was commonly used prior to the popularization of chlorofluorocarbons (Freons). Anhydrous ammonia is widely used in industrial refrigeration applications and hockey rinks because of its high energy efficiency and low cost. The Kalina cycle, which is of growing importance to geothermal power plants, depends on the wide boiling range of the ammonia-water mixture. Ammonia is used less frequently in commercial applications, such as in grocery store freezer cases and refrigerated displays due to its toxicity.
• For remediation of gaseous emissions
Ammonia is used to scrub SO2 from the burning of fossil fuels, and the resulting product is converted to ammonium sulfate for use as fertilizer. Ammonia neutralizes the nitrogen oxides (NOx) pollutants emitted by diesel engines. This technology, called SCR (selective catalytic reduction), relies on a vanadia-based catalyst.
• As a fuel
Ammonia was used during World War II to power buses in Belgium, and in engine and solar energy applications prior to 1900. Liquid ammonia was used as the fuel of the rocket airplane, the X-15. Although not as powerful as other fuels, it left no soot in the reusable rocket engine and its density approximately matches the density of the oxidizer, liquid oxygen, which simplified the aircraft's design.
Ammonia has been proposed as a practical alternative to fossil fuel for internal combustion engines. The calorific value of ammonia is 22.5 MJ/kg (9690 BTU/lb) which is about half that of diesel. In a normal engine, in which the water vapor is not condensed, the calorific value of ammonia will be about 21% less than this figure. It can be used in existing engines with only minor modifications to carburetors/injectors.
To meet these demands, significant capital would be required to increase present production levels. Although the second most produced chemical, the scale of ammonia production is a small fraction of world petroleum usage. It could be manufactured from renewable energy sources, as well as coal or nuclear power. It is however significantly less efficient than batteries. The 60 MW Rjukan dam in Telemark, Norway produced ammonia via electrolysis of water for many years from 1913 producing fertilizer for much of Europe. If produced from coal, the CO2 can be readily sequestered (the combustion products are nitrogen and water). In 1981 a Canadian company converted a 1981 Chevrolet Impala to operate using ammonia as fuel.
Ammonia engines or ammonia motors, using ammonia as a working fluid, have been proposed and occasionally used. The principle is similar to that used in a fireless locomotive, but with ammonia as the working fluid, instead of steam or compressed air. Ammonia engines were used experimentally in the 19th century by Goldsworthy Gurney in the UK and in streetcars in New Orleans in the USA.
• Antimicrobial agent for food products
As early as in 1895 it was known that ammonia was "strongly antiseptic. It requires 1.4 grams per liter to preserve beef tea." Anhydrous ammonia has been shown effective as an antimicrobial agent for animal feed and is currently used commercially to reduce or eliminate microbial contamination of beef. The New York Times reported in October, 2009 on an American company, Beef Products Inc., which turns fatty beef trimmings, averaging between 50 and 70 percent fat, into seven million pounds per week of lean finely textured beef by removing the fat using heat and centrifugation, then disinfecting the lean product with ammonia; the process was rated by the US Department of Agriculture as effective and safe on the basis of a study (financed by Beef Products) which found that the treatment reduces E. coli to undetectable levels. Further investigation by The New York Times published in December, 2009 revealed safety concerns about the process as well as consumer complaints about the taste and smell of beef treated at optimal levels of ammonia.
• As a stimulant
Ammonia has found significant use in various sports – particularly the strength sports of power lifting and Olympic weightlifting as a respiratory stimulant. Ammonia is commonly used in the illegal manufacture of Methamphetamine through a Birch reduction, the Birch method of making meth is dangerous because the alkali metal and liquid ammonia are both extremely reactive, and the temperature of liquid ammonia makes it susceptible to explosive boiling when reactants are added.
• Textile
Liquid ammonia is used for treatment of cotton materials, give a properties like mercerization using alkalis. In particular, it is used for pre-washing of wool.
• Lifting gas
At standard temperature and pressure ammonia is lighter than air, and has approximately 60% of the lifting power of hydrogen or helium. Ammonia has sometimes been used to fill weather balloons as a lifting gas. Because of its relatively high boiling point (compared to helium and hydrogen), ammonia could potentially be refrigerated and liquefied aboard an airship to reduce lift and add ballast (and returned to a gas to add lift and reduce ballast).
• Woodworking
Ammonia was historically used to darken quarter sawn white oak in Arts & Crafts and Mission style furniture. Ammonia fumes react with the natural tannins in the wood and cause it to change colors.

No comments:

Post a Comment